BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17975619)

  • 1. Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation using GaN-based Bragg reflection waveguide.
    Das R; Thyagarajan K
    Opt Lett; 2007 Nov; 32(21):3128-30. PubMed ID: 17975619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrabroadband midinfrared generation by using group-velocity-dispersion tailoring in a Bragg reflection waveguide for a difference-frequency-generation process.
    Das R; Thyagarajan K
    Appl Opt; 2009 Oct; 48(30):5678-82. PubMed ID: 19844300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband second-harmonic phase-matching in dispersion engineered slot waveguides.
    Kim S; Qi M
    Opt Express; 2016 Jan; 24(2):773-86. PubMed ID: 26832462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts.
    Mizuuchi K; Yamamoto K
    Opt Lett; 1998 Dec; 23(24):1880-2. PubMed ID: 18091942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased pump acceptance bandwidth in spontaneous parametric downconversion process using Bragg reflection waveguides.
    Thyagarajan K; Das R; Alibart O; de Micheli M; Ostrowsky DB; Tanzilli S
    Opt Express; 2008 Mar; 16(6):3577-82. PubMed ID: 18542450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave second harmonic generation in Bragg reflection waveguides.
    Abolghasem P; Han J; Bijlani BJ; Arjmand A; Helmy AS
    Opt Express; 2009 May; 17(11):9460-7. PubMed ID: 19466199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase matching in monolithic Bragg reflection waveguides.
    Helmy AS; Bijlani B; Abolghasem P
    Opt Lett; 2007 Aug; 32(16):2399-401. PubMed ID: 17700798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing.
    Zeaiter K; Hutchings DC; Gwilliam RM; Moutzouris K; Venugopal Rao S; Ebrahimzadeh M
    Opt Lett; 2003 Jun; 28(11):911-3. PubMed ID: 12816243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band.
    Yu NE; Ro JH; Cha M; Kurimura S; Taira T
    Opt Lett; 2002 Jun; 27(12):1046-8. PubMed ID: 18026360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude squeezing by means of quasi-phase-matched second-harmonic generation in a lithium niobate waveguide.
    Serkland DK; Kumar P; Arbore MA; Fejer MM
    Opt Lett; 1997 Oct; 22(19):1497-9. PubMed ID: 18188280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion tailoring of the quarter-wave Bragg reflection waveguide.
    West BR; Helmy AS
    Opt Express; 2006 May; 14(9):4073-86. PubMed ID: 19516555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient quasi-phase-matched blue second-harmonic generation in LiNbO(3) channel waveguides by a second-order grating.
    Cao X; Srivastava R; Ramaswamy RV
    Opt Lett; 1992 Apr; 17(8):592-4. PubMed ID: 19794568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband electric-field-induced LP
    Ménard JM; Köttig F; St J Russell P
    Opt Lett; 2016 Aug; 41(16):3795-8. PubMed ID: 27519091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large second harmonic generation enhancement in Si
    Billat A; Grassani D; Pfeiffer MHP; Kharitonov S; Kippenberg TJ; Brès CS
    Nat Commun; 2017 Oct; 8(1):1016. PubMed ID: 29044113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi phase matching in GaAs--AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing.
    Saher Helmy A; Hutchings DC; Kleckner TC; Marsh JH; Bryce AC; Arnold JM; Stanley CR; Aitchison JS; Brown CT; Moutzouris K; Ebrahimzadeh M
    Opt Lett; 2000 Sep; 25(18):1370-2. PubMed ID: 18066220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband second-harmonic generation in an angle-cut lithium niobate-on-insulator waveguide by a temperature gradient.
    Tang Y; Ding T; Lu C; Qiu J; Zhang Y; Huang Y; Liu S; Zheng Y; Chen X
    Opt Lett; 2023 Mar; 48(5):1108-1111. PubMed ID: 36857225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.
    Monat C; Grillet C; Corcoran B; Moss DJ; Eggleton BJ; White TP; Krauss TF
    Opt Express; 2010 Mar; 18(7):6831-40. PubMed ID: 20389702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second-harmonic generation with a high-index-clad waveguide.
    Mizuuchi K; Ohta H; Yamamoto K; Kato M
    Opt Lett; 1997 Aug; 22(16):1217-9. PubMed ID: 18185799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation.
    Zhao J; Rüsing M; Javid UA; Ling J; Li M; Lin Q; Mookherjea S
    Opt Express; 2020 Jun; 28(13):19669-19682. PubMed ID: 32672239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband 200-nm second-harmonic generation in silicon in the telecom band.
    Singh N; Raval M; Ruocco A; Watts MR
    Light Sci Appl; 2020; 9():17. PubMed ID: 32047626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.