These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17975619)

  • 1. Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation using GaN-based Bragg reflection waveguide.
    Das R; Thyagarajan K
    Opt Lett; 2007 Nov; 32(21):3128-30. PubMed ID: 17975619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrabroadband midinfrared generation by using group-velocity-dispersion tailoring in a Bragg reflection waveguide for a difference-frequency-generation process.
    Das R; Thyagarajan K
    Appl Opt; 2009 Oct; 48(30):5678-82. PubMed ID: 19844300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband second-harmonic phase-matching in dispersion engineered slot waveguides.
    Kim S; Qi M
    Opt Express; 2016 Jan; 24(2):773-86. PubMed ID: 26832462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts.
    Mizuuchi K; Yamamoto K
    Opt Lett; 1998 Dec; 23(24):1880-2. PubMed ID: 18091942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased pump acceptance bandwidth in spontaneous parametric downconversion process using Bragg reflection waveguides.
    Thyagarajan K; Das R; Alibart O; de Micheli M; Ostrowsky DB; Tanzilli S
    Opt Express; 2008 Mar; 16(6):3577-82. PubMed ID: 18542450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave second harmonic generation in Bragg reflection waveguides.
    Abolghasem P; Han J; Bijlani BJ; Arjmand A; Helmy AS
    Opt Express; 2009 May; 17(11):9460-7. PubMed ID: 19466199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase matching in monolithic Bragg reflection waveguides.
    Helmy AS; Bijlani B; Abolghasem P
    Opt Lett; 2007 Aug; 32(16):2399-401. PubMed ID: 17700798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-phase-matched second-harmonic generation in a GaAs/AlAs superlattice waveguide by ion-implantation-induced intermixing.
    Zeaiter K; Hutchings DC; Gwilliam RM; Moutzouris K; Venugopal Rao S; Ebrahimzadeh M
    Opt Lett; 2003 Jun; 28(11):911-3. PubMed ID: 12816243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band.
    Yu NE; Ro JH; Cha M; Kurimura S; Taira T
    Opt Lett; 2002 Jun; 27(12):1046-8. PubMed ID: 18026360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude squeezing by means of quasi-phase-matched second-harmonic generation in a lithium niobate waveguide.
    Serkland DK; Kumar P; Arbore MA; Fejer MM
    Opt Lett; 1997 Oct; 22(19):1497-9. PubMed ID: 18188280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion tailoring of the quarter-wave Bragg reflection waveguide.
    West BR; Helmy AS
    Opt Express; 2006 May; 14(9):4073-86. PubMed ID: 19516555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient quasi-phase-matched blue second-harmonic generation in LiNbO(3) channel waveguides by a second-order grating.
    Cao X; Srivastava R; Ramaswamy RV
    Opt Lett; 1992 Apr; 17(8):592-4. PubMed ID: 19794568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband electric-field-induced LP
    Ménard JM; Köttig F; St J Russell P
    Opt Lett; 2016 Aug; 41(16):3795-8. PubMed ID: 27519091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large second harmonic generation enhancement in Si
    Billat A; Grassani D; Pfeiffer MHP; Kharitonov S; Kippenberg TJ; Brès CS
    Nat Commun; 2017 Oct; 8(1):1016. PubMed ID: 29044113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi phase matching in GaAs--AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing.
    Saher Helmy A; Hutchings DC; Kleckner TC; Marsh JH; Bryce AC; Arnold JM; Stanley CR; Aitchison JS; Brown CT; Moutzouris K; Ebrahimzadeh M
    Opt Lett; 2000 Sep; 25(18):1370-2. PubMed ID: 18066220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband second-harmonic generation in an angle-cut lithium niobate-on-insulator waveguide by a temperature gradient.
    Tang Y; Ding T; Lu C; Qiu J; Zhang Y; Huang Y; Liu S; Zheng Y; Chen X
    Opt Lett; 2023 Mar; 48(5):1108-1111. PubMed ID: 36857225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.
    Monat C; Grillet C; Corcoran B; Moss DJ; Eggleton BJ; White TP; Krauss TF
    Opt Express; 2010 Mar; 18(7):6831-40. PubMed ID: 20389702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second-harmonic generation with a high-index-clad waveguide.
    Mizuuchi K; Ohta H; Yamamoto K; Kato M
    Opt Lett; 1997 Aug; 22(16):1217-9. PubMed ID: 18185799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation.
    Zhao J; Rüsing M; Javid UA; Ling J; Li M; Lin Q; Mookherjea S
    Opt Express; 2020 Jun; 28(13):19669-19682. PubMed ID: 32672239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband 200-nm second-harmonic generation in silicon in the telecom band.
    Singh N; Raval M; Ruocco A; Watts MR
    Light Sci Appl; 2020; 9():17. PubMed ID: 32047626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.