These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 17975824)
1. Comparative study of nanohydroxyapatite microspheres for medical applications. Mateus AY; Barrias CC; Ribeiro C; Ferraz MP; Monteiro FJ J Biomed Mater Res A; 2008 Aug; 86(2):483-93. PubMed ID: 17975824 [TBL] [Abstract][Full Text] [Related]
2. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Sato M; Sambito MA; Aslani A; Kalkhoran NM; Slamovich EB; Webster TJ Biomaterials; 2006 Apr; 27(11):2358-69. PubMed ID: 16337679 [TBL] [Abstract][Full Text] [Related]
3. Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. Ferraz MP; Mateus AY; Sousa JC; Monteiro FJ J Biomed Mater Res A; 2007 Jun; 81(4):994-1004. PubMed ID: 17252559 [TBL] [Abstract][Full Text] [Related]
4. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
5. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
6. Innovative macroporous granules of nanostructured-hydroxyapatite agglomerates: bioactivity and osteoblast-like cell behaviour. Laranjeira MS; Fernandes MH; Monteiro FJ J Biomed Mater Res A; 2010 Dec; 95(3):891-900. PubMed ID: 20845490 [TBL] [Abstract][Full Text] [Related]
7. Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. Sato M; Aslani A; Sambito MA; Kalkhoran NM; Slamovich EB; Webster TJ J Biomed Mater Res A; 2008 Jan; 84(1):265-72. PubMed ID: 17607739 [TBL] [Abstract][Full Text] [Related]
8. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203 [TBL] [Abstract][Full Text] [Related]
9. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior. Xu JL; Khor KA; Gu YW; Kumar R; Cheang P Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering. Abdel-Fattah WI; Jiang T; El-Bassyouni Gel-T; Laurencin CT Acta Biomater; 2007 Jul; 3(4):503-14. PubMed ID: 17320493 [TBL] [Abstract][Full Text] [Related]
11. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
12. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552 [TBL] [Abstract][Full Text] [Related]
13. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure. Wang Y; Hassan MS; Gunawan P; Lau R; Wang X; Xu R J Colloid Interface Sci; 2009 Nov; 339(1):69-77. PubMed ID: 19660764 [TBL] [Abstract][Full Text] [Related]
14. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method. Padilla S; Sánchez-Salcedo S; Vallet-Regí M J Biomed Mater Res A; 2005 Oct; 75(1):63-72. PubMed ID: 16088904 [TBL] [Abstract][Full Text] [Related]
15. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. Xu JL; Khor KA J Inorg Biochem; 2007 Feb; 101(2):187-95. PubMed ID: 17095092 [TBL] [Abstract][Full Text] [Related]
17. Development of nanohydroxyapatite/polycarbonate composite for bone repair. Liao Jianguo ; Zhang Li ; Zuo Yi ; Wang Huanan ; Li Jidong ; Zou Qin ; Li Yubao J Biomater Appl; 2009 Jul; 24(1):31-45. PubMed ID: 19386668 [TBL] [Abstract][Full Text] [Related]
18. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications. Ergun C; Liu H; Webster TJ J Biomed Mater Res A; 2009 Jun; 89(3):727-33. PubMed ID: 18464257 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders. Montazeri L; Javadpour J; Shokrgozar MA; Bonakdar S; Javadian S Biomed Mater; 2010 Aug; 5(4):045004. PubMed ID: 20571182 [TBL] [Abstract][Full Text] [Related]
20. Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite. Li H; Khor KA; Chow V; Cheang P J Biomed Mater Res A; 2007 Aug; 82(2):296-303. PubMed ID: 17274029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]