BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17975843)

  • 1. Stimulation of nitric oxide mechanotransduction in single osteoblasts using atomic force microscopy.
    McGarry JG; Maguire P; Campbell VA; O'Connell BC; Prendergast PJ; Jarvis SP
    J Orthop Res; 2008 Apr; 26(4):513-21. PubMed ID: 17975843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells.
    Sato K; Adachi T; Ueda D; Hojo M; Tomita Y
    J Biomech; 2007; 40(6):1246-55. PubMed ID: 16887125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio imaging of intracellular NO production in single bone cells after mechanical stimulation.
    Vatsa A; Mizuno D; Smit TH; Schmidt CF; MacKintosh FC; Klein-Nulend J
    J Bone Miner Res; 2006 Nov; 21(11):1722-8. PubMed ID: 17002570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Round versus flat: bone cell morphology, elasticity, and mechanosensing.
    Bacabac RG; Mizuno D; Schmidt CF; MacKintosh FC; Van Loon JJ; Klein-Nulend J; Smit TH
    J Biomech; 2008; 41(7):1590-8. PubMed ID: 18402963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement and characterization of whole-cell mechanical behavior.
    Jaasma MJ; Jackson WM; Keaveny TM
    Ann Biomed Eng; 2006 May; 34(5):748-58. PubMed ID: 16604292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells.
    Bakker AD; Joldersma M; Klein-Nulend J; Burger EH
    Am J Physiol Endocrinol Metab; 2003 Sep; 285(3):E608-13. PubMed ID: 12746215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of morphology, confluency, and phenotype on whole-cell mechanical behavior.
    Jaasma MJ; Jackson WM; Keaveny TM
    Ann Biomed Eng; 2006 May; 34(5):759-68. PubMed ID: 16604293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy.
    Simon A; Cohen-Bouhacina T; Porté MC; Aimé JP; Amédée J; Bareille R; Baquey C
    Cytometry A; 2003 Jul; 54(1):36-47. PubMed ID: 12820119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts.
    McGarry JG; Klein-Nulend J; Prendergast PJ
    Biochem Biophys Res Commun; 2005 Apr; 330(1):341-8. PubMed ID: 15781270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transduction of mechanical strain in bone.
    Duncan RL
    ASGSB Bull; 1995 Oct; 8(2):49-62. PubMed ID: 11538550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous observation of calcium signaling response and membrane deformation due to localized mechanical stimulus in single osteoblast-like cells.
    Adachi T; Sato K; Higashi N; Tomita Y; Hojo M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):43-50. PubMed ID: 19627770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of LIMK2 RNAi on reorganization of the actin cytoskeleton in osteoblasts induced by fluid shear stress.
    Fu Q; Wu C; Shen Y; Zheng S; Chen R
    J Biomech; 2008 Nov; 41(15):3225-8. PubMed ID: 18805530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells.
    Zhang X; Liu X; Sun J; He S; Lee I; Pak HK
    Ultramicroscopy; 2008 Sep; 108(10):1338-41. PubMed ID: 18657365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric piezoelectric actuator substrate for osteoblast mechanical stimulation.
    Frias C; Reis J; Capela e Silva F; Potes J; Simões J; Marques AT
    J Biomech; 2010 Apr; 43(6):1061-6. PubMed ID: 20116061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone cell elasticity and morphology changes during the cell cycle.
    Kelly GM; Kilpatrick JI; van Es MH; Weafer PP; Prendergast PJ; Jarvis SP
    J Biomech; 2011 May; 44(8):1484-90. PubMed ID: 21481877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells.
    Batra NN; Li YJ; Yellowley CE; You L; Malone AM; Kim CH; Jacobs CR
    J Biomech; 2005 Sep; 38(9):1909-17. PubMed ID: 16023480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The mechanotransduction mechanism of how osteoblasts respond to mechanical stimulation].
    Wang Y; Tang L; Wang J; Cai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):400-2. PubMed ID: 15884565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elasticity mapping of pore-suspending native cell membranes.
    Lorenz B; Mey I; Steltenkamp S; Fine T; Rommel C; Müller MM; Maiwald A; Wegener J; Steinem C; Janshoff A
    Small; 2009 Apr; 5(7):832-8. PubMed ID: 19242949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells.
    Sato K; Adachi T; Matsuo M; Tomita Y
    J Biomech; 2005 Sep; 38(9):1895-901. PubMed ID: 16023478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between apical membrane elasticity and stress fiber organization in fibroblasts analyzed by fluorescence and atomic force microscopy.
    Kidoaki S; Matsuda T; Yoshikawa K
    Biomech Model Mechanobiol; 2006 Nov; 5(4):263-72. PubMed ID: 16767450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.