These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 17976380)
1. Locked 5Zs-biliverdin blocks the Meta-RA to Meta-RC transition in the functional cycle of bacteriophytochrome Agp1. Seibeck S; Borucki B; Otto H; Inomata K; Khawn H; Kinoshita H; Michael N; Lamparter T; Heyn MP FEBS Lett; 2007 Nov; 581(28):5425-9. PubMed ID: 17976380 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the covalent and noncovalent adducts of Agp1 phytochrome assembled with biliverdin and phycocyanobilin by circular dichroism and flash photolysis. Borucki B; Seibeck S; Heyn MP; Lamparter T Biochemistry; 2009 Jul; 48(27):6305-17. PubMed ID: 19496558 [TBL] [Abstract][Full Text] [Related]
3. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores. Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981 [TBL] [Abstract][Full Text] [Related]
4. Light-induced activation of bacterial phytochrome Agp1 monitored by static and time-resolved FTIR spectroscopy. Piwowarski P; Ritter E; Hofmann KP; Hildebrandt P; von Stetten D; Scheerer P; Michael N; Lamparter T; Bartl F Chemphyschem; 2010 Apr; 11(6):1207-14. PubMed ID: 20333618 [TBL] [Abstract][Full Text] [Related]
5. Determination of the chromophore structures in the photoinduced reaction cycle of phytochrome. Mroginski MA; Murgida DH; von Stetten D; Kneip C; Mark F; Hildebrandt P J Am Chem Soc; 2004 Dec; 126(51):16734-5. PubMed ID: 15612706 [TBL] [Abstract][Full Text] [Related]
6. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Andel F; Lagarias JC; Mathies RA Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170 [TBL] [Abstract][Full Text] [Related]
7. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. Lamparter T; Carrascal M; Michael N; Martinez E; Rottwinkel G; Abian J Biochemistry; 2004 Mar; 43(12):3659-69. PubMed ID: 15035636 [TBL] [Abstract][Full Text] [Related]
8. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens. Scheerer P; Michael N; Park JH; Noack S; Förster C; Hammam MA; Inomata K; Choe HW; Lamparter T; Krauss N J Struct Biol; 2006 Jan; 153(1):97-102. PubMed ID: 16377207 [TBL] [Abstract][Full Text] [Related]
9. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2. Inomata K; Noack S; Hammam MA; Khawn H; Kinoshita H; Murata Y; Michael N; Scheerer P; Krauss N; Lamparter T J Biol Chem; 2006 Sep; 281(38):28162-73. PubMed ID: 16803878 [TBL] [Abstract][Full Text] [Related]
11. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. Kneip C; Hildebrandt P; Schlamann W; Braslavsky SE; Mark F; Schaffner K Biochemistry; 1999 Nov; 38(46):15185-92. PubMed ID: 10563801 [TBL] [Abstract][Full Text] [Related]
12. Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome? Anders Borg O; Durbeej B Phys Chem Chem Phys; 2008 May; 10(18):2528-37. PubMed ID: 18446253 [TBL] [Abstract][Full Text] [Related]
13. Sub-picosecond mid-infrared spectroscopy of phytochrome Agp1 from Agrobacterium tumefaciens. Schumann C; Gross R; Michael N; Lamparter T; Diller R Chemphyschem; 2007 Aug; 8(11):1657-63. PubMed ID: 17614346 [TBL] [Abstract][Full Text] [Related]
15. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts. Inomata K; Hammam MA; Kinoshita H; Murata Y; Khawn H; Noack S; Michael N; Lamparter T J Biol Chem; 2005 Jul; 280(26):24491-7. PubMed ID: 15878872 [TBL] [Abstract][Full Text] [Related]
16. Small-angle X-ray scattering reveals the solution structure of a bacteriophytochrome in the catalytically active Pr state. Evans K; Grossmann JG; Fordham-Skelton AP; Papiz MZ J Mol Biol; 2006 Dec; 364(4):655-66. PubMed ID: 17027028 [TBL] [Abstract][Full Text] [Related]
17. Femto- to Microsecond Photodynamics of an Unusual Bacteriophytochrome. Mathes T; Ravensbergen J; Kloz M; Gleichmann T; Gallagher KD; Woitowich NC; St Peter R; Kovaleva SE; Stojković EA; Kennis JT J Phys Chem Lett; 2015 Jan; 6(2):239-43. PubMed ID: 26263456 [TBL] [Abstract][Full Text] [Related]
18. Phytochrome as molecular machine: revealing chromophore action during the Pfr --> Pr photoconversion by magic-angle spinning NMR spectroscopy. Rohmer T; Lang C; Bongards C; Gupta KB; Neugebauer J; Hughes J; Gärtner W; Matysik J J Am Chem Soc; 2010 Mar; 132(12):4431-7. PubMed ID: 20205422 [TBL] [Abstract][Full Text] [Related]
19. Primary reactions of bacteriophytochrome observed with ultrafast mid-infrared spectroscopy. Toh KC; Stojković EA; Rupenyan AB; van Stokkum IH; Salumbides M; Groot ML; Moffat K; Kennis JT J Phys Chem A; 2011 Apr; 115(16):3778-86. PubMed ID: 21192725 [TBL] [Abstract][Full Text] [Related]
20. Formation of the early photoproduct lumi-R of cyanobacterial phytochrome cph1 observed by ultrafast mid-infrared spectroscopy. van Thor JJ; Ronayne KL; Towrie M J Am Chem Soc; 2007 Jan; 129(1):126-32. PubMed ID: 17199291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]