BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 17976528)

  • 1. Functional analysis of phenolsulfonphthalein transport system in Long-Evans Cinnamon rats.
    Itagaki S; Chiba M; Kobayashi M; Sugawara M; Kobayashi M; Hirano T; Iseki K
    Biochim Biophys Acta; 2008 Jan; 1778(1):270-5. PubMed ID: 17976528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenolsulfonphthalein transport by potential-sensitive urate transport system.
    Itagaki S; Shimamoto S; Sugawara M; Kobayashi M; Miyazaki K; Hirano T; Iseki K
    Eur J Pharmacol; 2005 Aug; 518(2-3):83-9. PubMed ID: 16083873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of urinary excretion of phenolsulfonphthalein in an animal model for Wilson's disease (Long-Evans Cinnamon rats) with that in normal Wistar rats: involvement of primary active organic anion transporter.
    Itagaki S; Shimamoto S; Hirano T; Iseki K; Sugawara M; Nishimura S; Fujimoto M; Kobayashi M; Miyazaki K
    J Pharm Pharm Sci; 2004 Jul; 7(2):227-34. PubMed ID: 15367380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the disposition behavior of organic anions in an animal model for Wilson's disease (Long-Evans Cinnamon rats) with that in normal Long-Evans Agouti rats.
    Itagaki S; Sugawara M; Kobayashi M; Miyazaki K; Hirano T; Iseki K
    Drug Metab Pharmacokinet; 2004 Apr; 19(2):150-4. PubMed ID: 15499181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of urate and p-aminohippurate in rabbit renal brush-border membranes.
    Martinez F; Manganel M; Montrose-Rafizadeh C; Werner D; Roch-Ramel F
    Am J Physiol; 1990 May; 258(5 Pt 2):F1145-53. PubMed ID: 2337146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier-mediated transport of urate by chicken (Gallus domesticus) renal brush-border membrane vesicles.
    Kuo SM; Austic RE
    Comp Biochem Physiol A Comp Physiol; 1987; 87(3):587-95. PubMed ID: 2887343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-driven p-aminohippurate, chloride, and urate transport in porcine renal brush-border membrane vesicles.
    Krick W; Wolff NA; Burckhardt G
    Pflugers Arch; 2000 Nov; 441(1):125-32. PubMed ID: 11205051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urate transport in brush-border membrane of human kidney.
    Roch-Ramel F; Werner D; Guisan B
    Am J Physiol; 1994 May; 266(5 Pt 2):F797-805. PubMed ID: 8203564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal secretion of phenolsulfonphthalein: analysis of its vectorial transport in normal and mutant analbuminemic rats.
    Inoue M; Koyama H; Nagase S; Morino Y
    J Lab Clin Med; 1985 Apr; 105(4):484-8. PubMed ID: 3981059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of secretory intestinal transport of phenolsulfonphthalein.
    Itagaki S; Chiba M; Shimamoto S; Sugawara M; Kobayashi M; Miyazaki K; Hirano T; Iseki K
    Drug Metab Pharmacokinet; 2005 Feb; 20(1):72-8. PubMed ID: 15770077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of p-aminohippurate, tetraethylammonium and D-glucose in renal brush border membranes from rats with acute renal failure.
    Hori R; Takano M; Okano T; Inui K
    J Pharmacol Exp Ther; 1985 Jun; 233(3):776-81. PubMed ID: 2989496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urate and p-aminohippurate transport in the brush border membrane of the pig kidney.
    Werner D; Martinez F; Roch-Ramel F
    J Pharmacol Exp Ther; 1990 Feb; 252(2):792-9. PubMed ID: 2313601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal organic anion transport system: pharmacological, physiological, and biochemical aspects.
    Møller JV; Sheikh MI
    Pharmacol Rev; 1982 Dec; 34(4):315-58. PubMed ID: 6763702
    [No Abstract]   [Full Text] [Related]  

  • 14. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles.
    Blomstedt JW; Aronson PS
    J Clin Invest; 1980 Apr; 65(4):931-4. PubMed ID: 7358852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of pharmacological effects of uricosuric agents by concomitant treatment with pyrazinamide in rats.
    Taniguchi T; Ashizawa N; Matsumoto K; Iwanaga T
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Mar; 390(3):253-260. PubMed ID: 27933340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose probenecid selectively inhibits urinary excretion of phenolsulfonphthalein in rats without affecting biliary excretion.
    Shin YJ; Lee JH; Oh JH; Lee YJ
    J Appl Toxicol; 2013 Jun; 33(6):511-5. PubMed ID: 22161506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urate uptake in membrane vesicles of rat renal cortex: effect of copper.
    Abramson RG; King VF; Reif MC; Leal-Pinto E; Baruch SB
    Am J Physiol; 1982 Feb; 242(2):F158-70. PubMed ID: 7065132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major role of organic anion transporters in the uptake of phenolsulfonphthalein in the kidney.
    Itagaki S; Sugawara M; Kobayashi M; Nishimura S; Fujimoto M; Miyazaki K; Iseki K
    Eur J Pharmacol; 2003 Aug; 475(1-3):85-92. PubMed ID: 12954363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 3'-azido-3'-deoxythymidine (AZT) on organic ion transport in rat renal brush border membrane vesicles.
    Griffiths DA; Hall SD; Sokol PP
    J Pharmacol Exp Ther; 1992 Jan; 260(1):128-33. PubMed ID: 1530972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anti-inflammatory bowel disease drug, E3040, on urate transport in rat renal brush border membrane vesicles.
    Yamada H; Kotaki H; Itoh T; Sawada Y; Iga T
    Eur J Pharmacol; 2000 Oct; 406(1):45-8. PubMed ID: 11011031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.