These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Brechenmacher L; Kim MY; Benitez M; Li M; Joshi T; Calla B; Lee MP; Libault M; Vodkin LO; Xu D; Lee SH; Clough SJ; Stacey G Mol Plant Microbe Interact; 2008 May; 21(5):631-45. PubMed ID: 18393623 [TBL] [Abstract][Full Text] [Related]
3. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621 [TBL] [Abstract][Full Text] [Related]
4. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean. Stockwell SB; Reutimann L; Guerinot ML Mol Plant Microbe Interact; 2012 Jan; 25(1):119-28. PubMed ID: 21879796 [TBL] [Abstract][Full Text] [Related]
5. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836 [TBL] [Abstract][Full Text] [Related]
6. The PhyR-sigma(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Gourion B; Sulser S; Frunzke J; Francez-Charlot A; Stiefel P; Pessi G; Vorholt JA; Fischer HM Mol Microbiol; 2009 Jul; 73(2):291-305. PubMed ID: 19555458 [TBL] [Abstract][Full Text] [Related]
7. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. Sugawara M; Shah GR; Sadowsky MJ; Paliy O; Speck J; Vail AW; Gyaneshwar P Mol Plant Microbe Interact; 2011 Apr; 24(4):451-7. PubMed ID: 21190435 [TBL] [Abstract][Full Text] [Related]
8. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Koch M; Delmotte N; Rehrauer H; Vorholt JA; Pessi G; Hennecke H Mol Plant Microbe Interact; 2010 Jun; 23(6):784-90. PubMed ID: 20459317 [TBL] [Abstract][Full Text] [Related]
9. Strain selection for improvement of Bradyrhizobium japonicum competitiveness for nodulation of soybean. Althabegoiti MJ; López-García SL; Piccinetti C; Mongiardini EJ; Pérez-Giménez J; Quelas JI; Perticari A; Lodeiro AR FEMS Microbiol Lett; 2008 May; 282(1):115-23. PubMed ID: 18336548 [TBL] [Abstract][Full Text] [Related]
10. A novel genetic locus outside the symbiotic island is required for effective symbiosis of Bradyrhizobium japonicum with soybean Glycine max. Becker BU; Bonnard N; Boiffin V; Mörschel E; Tresierra A; Müller P Res Microbiol; 2004 Nov; 155(9):770-80. PubMed ID: 15501655 [TBL] [Abstract][Full Text] [Related]
12. Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots. Hayashi S; Reid DE; Lorenc MT; Stiller J; Edwards D; Gresshoff PM; Ferguson BJ Plant Biotechnol J; 2012 Oct; 10(8):995-1010. PubMed ID: 22863334 [TBL] [Abstract][Full Text] [Related]
13. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Zehner S; Schober G; Wenzel M; Lang K; Göttfert M Mol Plant Microbe Interact; 2008 Aug; 21(8):1087-93. PubMed ID: 18616405 [TBL] [Abstract][Full Text] [Related]
14. Temperature-dependent expression of type III secretion system genes and its regulation in Bradyrhizobium japonicum. Wei M; Takeshima K; Yokoyama T; Minamisawa K; Mitsui H; Itakura M; Kaneko T; Tabata S; Saeki K; Omori H; Tajima S; Uchiumi T; Abe M; Ishii S; Ohwada T Mol Plant Microbe Interact; 2010 May; 23(5):628-37. PubMed ID: 20367471 [TBL] [Abstract][Full Text] [Related]
15. Genetic diversity of native soybean bradyrhizobia from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal. Risal CP; Yokoyama T; Ohkama-Ohtsu N; Djedidi S; Sekimoto H Syst Appl Microbiol; 2010 Nov; 33(7):416-25. PubMed ID: 20851547 [TBL] [Abstract][Full Text] [Related]
16. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study. Vauclare P; Bligny R; Gout E; Widmer F FEMS Microbiol Lett; 2013 Jun; 343(1):49-56. PubMed ID: 23480054 [TBL] [Abstract][Full Text] [Related]
17. Small RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their analysis. Madhugiri R; Pessi G; Voss B; Hahn J; Sharma CM; Reinhardt R; Vogel J; Hess WR; Fischer HM; Evguenieva-Hackenberg E RNA Biol; 2012 Jan; 9(1):47-58. PubMed ID: 22258152 [TBL] [Abstract][Full Text] [Related]
18. An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis. Benson HP; Boncompagni E; Guerinot ML Mol Plant Microbe Interact; 2005 Sep; 18(9):950-9. PubMed ID: 16167765 [TBL] [Abstract][Full Text] [Related]
19. Expression of nir, nor and nos denitrification genes from Bradyrhizobium japonicum in soybean root nodules. Mesa S; Alché Jd JDD; Bedmar E; Delgado MJ Physiol Plant; 2004 Feb; 120(2):205-211. PubMed ID: 15032854 [TBL] [Abstract][Full Text] [Related]
20. Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum. Lindemann A; Koch M; Pessi G; Müller AJ; Balsiger S; Hennecke H; Fischer HM FEMS Microbiol Lett; 2010 Nov; 312(2):184-91. PubMed ID: 20883496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]