BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17977556)

  • 1. Understanding nicotinamide dinucleotide cofactor and substrate specificity in class I flavoprotein disulfide oxidoreductases: crystallographic analysis of a glutathione amide reductase.
    Van Petegem F; De Vos D; Savvides S; Vergauwen B; Van Beeumen J
    J Mol Biol; 2007 Dec; 374(4):883-9. PubMed ID: 17977556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling.
    Vergauwen B; Pauwels F; Jacquemotte F; Meyer TE; Cusanovich MA; Bartsch RG; Van Beeumen JJ
    J Biol Chem; 2001 Jun; 276(24):20890-7. PubMed ID: 11399772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity.
    Stoll VS; Simpson SJ; Krauth-Siegel RL; Walsh CT; Pai EF
    Biochemistry; 1997 May; 36(21):6437-47. PubMed ID: 9174360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and preliminary X-ray crystallographic analysis of glutathione amide reductase from Chromatium gracile.
    Vergauwen B; Van Petegem F; Remaut H; Pauwels F; Van Beeumen JJ
    Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):339-40. PubMed ID: 11807270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase.
    Senda T; Yamada T; Sakurai N; Kubota M; Nishizaki T; Masai E; Fukuda M; Mitsuidagger Y
    J Mol Biol; 2000 Dec; 304(3):397-410. PubMed ID: 11090282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of putidaredoxin reductase from Pseudomonas putida, the final structural component of the cytochrome P450cam monooxygenase.
    Sevrioukova IF; Li H; Poulos TL
    J Mol Biol; 2004 Feb; 336(4):889-902. PubMed ID: 15095867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase.
    Perham RN; Scrutton NS; Berry A
    Bioessays; 1991 Oct; 13(10):515-25. PubMed ID: 1755827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution.
    Stehle T; Ahmed SA; Claiborne A; Schulz GE
    J Mol Biol; 1991 Oct; 221(4):1325-44. PubMed ID: 1942054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavoprotein disulfide reductases: advances in chemistry and function.
    Argyrou A; Blanchard JS
    Prog Nucleic Acid Res Mol Biol; 2004; 78():89-142. PubMed ID: 15210329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the mechanism of glutathione reductase for synthesis of active site bound metallic nanoparticles and electrical connection to electrodes.
    Scott D; Toney M; Muzikár M
    J Am Chem Soc; 2008 Jan; 130(3):865-74. PubMed ID: 18166048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: crystallographic, kinetic, and spectroscopic studies.
    Gallwitz H; Bonse S; Martinez-Cruz A; Schlichting I; Schumacher K; Krauth-Siegel RL
    J Med Chem; 1999 Feb; 42(3):364-72. PubMed ID: 9986706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis.
    Veine DM; Arscott LD; Williams CH
    Biochemistry; 1998 Nov; 37(44):15575-82. PubMed ID: 9799522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.
    Picaud T; Desbois A
    Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione reductase and thioredoxin reductase at the crossroad: the structure of Schistosoma mansoni thioredoxin glutathione reductase.
    Angelucci F; Miele AE; Boumis G; Dimastrogiovanni D; Brunori M; Bellelli A
    Proteins; 2008 Aug; 72(3):936-45. PubMed ID: 18300227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.
    Tanner JJ; Tu SC; Barbour LJ; Barnes CL; Krause KL
    Protein Sci; 1999 Sep; 8(9):1725-32. PubMed ID: 10493573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases.
    Lu G; Campbell WH; Schneider G; Lindqvist Y
    Structure; 1994 Sep; 2(9):809-21. PubMed ID: 7812715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flavoprotein monooxygenase that catalyses a Baeyer-Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor.
    Jensen CN; Cartwright J; Ward J; Hart S; Turkenburg JP; Ali ST; Allen MJ; Grogan G
    Chembiochem; 2012 Apr; 13(6):872-8. PubMed ID: 22416037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction.
    Griese JJ; P Jakob R; Schwarzinger S; Dobbek H
    J Mol Biol; 2006 Aug; 361(1):140-52. PubMed ID: 16822524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.