These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 17977572)
1. Feasibility of phosphate fertilizer to immobilize cadmium in a field. Hong CO; Lee DK; Kim PJ Chemosphere; 2008 Feb; 70(11):2009-15. PubMed ID: 17977572 [TBL] [Abstract][Full Text] [Related]
2. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Hong CO; Lee DK; Chung DY; Kim PJ Arch Environ Contam Toxicol; 2007 May; 52(4):496-502. PubMed ID: 17253095 [TBL] [Abstract][Full Text] [Related]
3. Comparison of phosphate materials for immobilizing cadmium in soil. Hong CO; Chung DY; Lee DK; Kim PJ Arch Environ Contam Toxicol; 2010 Feb; 58(2):268-74. PubMed ID: 19633979 [TBL] [Abstract][Full Text] [Related]
4. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure. Shan H; Su S; Liu R; Li S Environ Sci Pollut Res Int; 2016 Aug; 23(15):15208-17. PubMed ID: 27098882 [TBL] [Abstract][Full Text] [Related]
5. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils. Bolan N; Mahimairaja S; Kunhikrishnan A; Naidu R J Hazard Mater; 2013 Oct; 261():725-32. PubMed ID: 23177243 [TBL] [Abstract][Full Text] [Related]
6. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil. Zheng RL; Li HF; Jiang RF; Zhang FS Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549 [TBL] [Abstract][Full Text] [Related]
7. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Lambert R; Grant C; Sauvé S Sci Total Environ; 2007 Jun; 378(3):293-305. PubMed ID: 17400282 [TBL] [Abstract][Full Text] [Related]
8. Interactions of humates and chlorides with cadmium drive soil cadmium chemistry and uptake by radish cultivars. Ondrasek G; Romic D; Rengel Z Sci Total Environ; 2020 Feb; 702():134887. PubMed ID: 31726343 [TBL] [Abstract][Full Text] [Related]
9. [Chemical forms of cadmium in industrial contaminated soil and its phytoremediation]. Tie M; Liang Y; Zang S; Pan W; Sun T; Li H Ying Yong Sheng Tai Xue Bao; 2006 Feb; 17(2):348-50. PubMed ID: 16706068 [TBL] [Abstract][Full Text] [Related]
10. [Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanisms]. Liu ZB; Ji XH; Peng H; Tian FX; Wu JM; Shi LH Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1585-90. PubMed ID: 22937647 [TBL] [Abstract][Full Text] [Related]
11. Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. Naeem A; Saifullah ; Ghafoor A; Farooq M J Sci Food Agric; 2015 Sep; 95(12):2467-72. PubMed ID: 25355244 [TBL] [Abstract][Full Text] [Related]
12. Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system. Chen S; Sun L; Sun T; Chao L; Guo G Environ Geochem Health; 2007 Oct; 29(5):435-46. PubMed ID: 17404694 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. Thawornchaisit U; Polprasert C J Hazard Mater; 2009 Jun; 165(1-3):1109-13. PubMed ID: 19118949 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming. Hong CO; Gutierrez J; Yun SW; Lee YB; Yu C; Kim PJ Arch Environ Contam Toxicol; 2009 Feb; 56(2):190-200. PubMed ID: 18704256 [TBL] [Abstract][Full Text] [Related]
15. [Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil]. Liu ZB; Ji XH; Tian FX; Peng H; Wu JM; Shi LH Huan Jing Ke Xue; 2011 Apr; 32(4):1164-70. PubMed ID: 21717764 [TBL] [Abstract][Full Text] [Related]
16. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chen YX; Lin Q; Luo YM; He YF; Zhen SJ; Yu YL; Tian GM; Wong MH Chemosphere; 2003 Feb; 50(6):807-11. PubMed ID: 12688495 [TBL] [Abstract][Full Text] [Related]
17. Influences of phosphate nutritional level on the phytoavailability and speciation distribution of cadmium and lead in soil. Chen S; Sun TH; Sun LN; Zhou QX; Chao L J Environ Sci (China); 2006; 18(6):1247-53. PubMed ID: 17294973 [TBL] [Abstract][Full Text] [Related]
18. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. Hu Y; Nan Z; Jin C; Wang N; Luo H Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230 [TBL] [Abstract][Full Text] [Related]
19. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment. Lehmann C; Rebele F Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982 [TBL] [Abstract][Full Text] [Related]
20. The role of root hairs in cadmium acquisition by barley. Zheng R; Li H; Jiang R; Römheld V; Zhang F; Zhao FJ Environ Pollut; 2011 Feb; 159(2):408-15. PubMed ID: 21093133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]