These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17977776)

  • 21. The removal of MO molecules from aqueous solution by the combination of ultrasound/adsorption/photocatalysis.
    Li J; Mi C; Li J; Xu Y; Jia Z; Li M
    Ultrason Sonochem; 2008 Sep; 15(6):949-54. PubMed ID: 18413294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst.
    Bejarano-Pérez NJ; Suárez-Herrera MF
    Ultrason Sonochem; 2007 Jul; 14(5):589-595. PubMed ID: 17123855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic modeling and determination role of sono/photo nanocatalyst-generated radical species on degradation of hydroquinone in aqueous solution.
    Rahimi S; Ayati B; Rezaee A
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12185-98. PubMed ID: 26971517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study.
    Li Y; Li X; Li J; Yin J
    Water Res; 2006 Mar; 40(6):1119-26. PubMed ID: 16503343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance.
    Yang XH; Fu HT; Wong K; Jiang XC; Yu AB
    Nanotechnology; 2013 Oct; 24(41):415601. PubMed ID: 24045164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions.
    He Y; Grieser F; Ashokkumar M
    Ultrason Sonochem; 2011 Sep; 18(5):974-80. PubMed ID: 21481625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity.
    Wang DH; Jia L; Wu XL; Lu LQ; Xu AW
    Nanoscale; 2012 Jan; 4(2):576-84. PubMed ID: 22143193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photocatalytic degradation of dye by Ag/TiO
    Deng H; He H; Sun S; Zhu X; Zhou D; Han F; Huang B; Pan X
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35900-35912. PubMed ID: 31707612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat treatment effects on the characteristics and sonocatalytic performance of TiO2 in the degradation of organic dyes in aqueous solution.
    Abdullah AZ; Ling PY
    J Hazard Mater; 2010 Jan; 173(1-3):159-67. PubMed ID: 19740600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photocatalytic degradation of azo dye in TiO2 suspended solution.
    Hung CH; Chiang PC; Yuan C; Chou CY
    Water Sci Technol; 2001; 43(2):313-20. PubMed ID: 11380196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sonochemical synthesis of Au-TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment.
    Anandan S; Ashokkumar M
    Ultrason Sonochem; 2009 Mar; 16(3):316-20. PubMed ID: 19028129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The degradation mechanism of methyl orange under photo-catalysis of TiO2.
    Yu L; Xi J; Li MD; Chan HT; Su T; Phillips DL; Chan WK
    Phys Chem Chem Phys; 2012 Mar; 14(10):3589-95. PubMed ID: 22310904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of TiO₂ and TiO₂/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis.
    Ramos DD; Bezerra PC; Quina FH; Dantas RF; Casagrande GA; Oliveira SC; Oliveira MR; Oliveira LC; Ferreira VS; Oliveira SL; Machulek A
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):774-83. PubMed ID: 24609723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure.
    Khataee AR; Pons MN; Zahraa O
    J Hazard Mater; 2009 Aug; 168(1):451-7. PubMed ID: 19278779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sonophotocatalytic degradation of sodium diclofenac using low power ultrasound and micro sized TiO
    Meroni D; Jiménez-Salcedo M; Falletta E; Bresolin BM; Kait CF; Boffito DC; Bianchi CL; Pirola C
    Ultrason Sonochem; 2020 Oct; 67():105123. PubMed ID: 32283492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue.
    Naraginti S; Stephen FB; Radhakrishnan A; Sivakumar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():814-9. PubMed ID: 25150432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium.
    Pugazhenthiran N; Murugesan S; Anandan S
    J Hazard Mater; 2013 Dec; 263 Pt 2():541-9. PubMed ID: 24231325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination.
    Rajamanickam D; Dhatshanamurthi P; Shanthi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():489-98. PubMed ID: 25528508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of titania fibers obtained by electrospinning in photocatalytic degradation of methyl orange.
    Alves AK; Berutti FA; Bergmann CP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jul; 44(9):835-40. PubMed ID: 19799051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange.
    Yun DM; Cho HH; Jang JW; Park JW
    Water Res; 2013 Apr; 47(5):1858-66. PubMed ID: 23375600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.