BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17977834)

  • 1. Glycogen synthase kinase 3 suppresses myogenic differentiation through negative regulation of NFATc3.
    van der Velden JLJ; Schols AMWJ; Willems J; Kelders MCJM; Langen RCJ
    J Biol Chem; 2008 Jan; 283(1):358-366. PubMed ID: 17977834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of glycogen synthase kinase-3beta activity is sufficient to stimulate myogenic differentiation.
    van der Velden JL; Langen RC; Kelders MC; Wouters EF; Janssen-Heininger YM; Schols AM
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C453-62. PubMed ID: 16162663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of GSK-3β activation by M-cadherin protects myoblasts against mitochondria-associated apoptosis during myogenic differentiation.
    Wang Y; Hao Y; Alway SE
    J Cell Sci; 2011 Nov; 124(Pt 22):3835-47. PubMed ID: 22114306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of glycogen synthase kinase 3β (GSK-3β) enhances mitochondrial biogenesis during myogenesis.
    Theeuwes WF; Gosker HR; Langen RCJ; Pansters NAM; Schols AMWJ; Remels AHV
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2913-2926. PubMed ID: 29883716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of glycogen synthase kinase-3β attenuates glucocorticoid-induced suppression of myogenic differentiation in vitro.
    Ma Z; Zhong Z; Zheng Z; Shi XM; Zhang W
    PLoS One; 2014; 9(8):e105528. PubMed ID: 25127359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of glycogen synthase kinase-3β is required for osteoclast differentiation.
    Jang HD; Shin JH; Park DR; Hong JH; Yoon K; Ko R; Ko CY; Kim HS; Jeong D; Kim N; Lee SY
    J Biol Chem; 2011 Nov; 286(45):39043-50. PubMed ID: 21949120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential Role of Glycogen Synthase Kinase-3β in Regulation of Myocardin Activity in Human Vascular Smooth Muscle Cells.
    Zhou YX; Shi Z; Singh P; Yin H; Yu YN; Li L; Walsh MP; Gui Y; Zheng XL
    J Cell Physiol; 2016 Feb; 231(2):393-402. PubMed ID: 26129946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental regulation of the mouse IGF-I exon 1 promoter region by calcineurin activation of NFAT in skeletal muscle.
    Alfieri CM; Evans-Anderson HJ; Yutzey KE
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1887-94. PubMed ID: 17229811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway.
    Kim MS; Shutov LP; Gnanasekaran A; Lin Z; Rysted JE; Ulrich JD; Usachev YM
    J Biol Chem; 2014 Nov; 289(45):31349-60. PubMed ID: 25231981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression.
    Delling U; Tureckova J; Lim HW; De Windt LJ; Rotwein P; Molkentin JD
    Mol Cell Biol; 2000 Sep; 20(17):6600-11. PubMed ID: 10938134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo-activated ERK1/2 is critical for the promyogenic function of Stim1.
    Lee HJ; Bae GU; Leem YE; Choi HK; Kang TM; Cho H; Kim ST; Kang JS
    Mol Biol Cell; 2012 Apr; 23(7):1376-87. PubMed ID: 22298426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycogen synthase kinase-3β is required for the induction of skeletal muscle atrophy.
    Verhees KJ; Schols AM; Kelders MC; Op den Kamp CM; van der Velden JL; Langen RC
    Am J Physiol Cell Physiol; 2011 Nov; 301(5):C995-C1007. PubMed ID: 21832246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β.
    Pansters NA; van der Velden JL; Kelders MC; Laeremans H; Schols AM; Langen RC
    Cell Mol Life Sci; 2011 Feb; 68(3):523-35. PubMed ID: 20694829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3beta.
    van der Velden JL; Langen RC; Kelders MC; Willems J; Wouters EF; Janssen-Heininger YM; Schols AM
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1636-44. PubMed ID: 17166938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct activation properties of the nuclear factor of activated T-cells (NFAT) isoforms NFATc3 and NFATc4 in neurons.
    Ulrich JD; Kim MS; Houlihan PR; Shutov LP; Mohapatra DP; Strack S; Usachev YM
    J Biol Chem; 2012 Nov; 287(45):37594-609. PubMed ID: 22977251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The circadian E3 ligase FBXL21 regulates myoblast differentiation and sarcomere architecture via MYOZ1 ubiquitination and NFAT signaling.
    Lim JY; Kim E; Douglas CM; Wirianto M; Han C; Ono K; Kim SY; Ji JH; Tran CK; Chen Z; Esser KA; Yoo SH
    PLoS Genet; 2022 Dec; 18(12):e1010574. PubMed ID: 36574402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of PGC-1α expression by a GSK-3β-TFEB signaling axis in skeletal muscle.
    Theeuwes WF; Gosker HR; Schols AMWJ; Langen RCJ; Remels AHV
    Biochim Biophys Acta Mol Cell Res; 2020 Feb; 1867(2):118610. PubMed ID: 31738957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycogen synthase kinase 3beta regulation of nuclear factor of activated T-cells isoform c1 in the vascular smooth muscle cell response to injury.
    Chow W; Hou G; Bendeck MP
    Exp Cell Res; 2008 Oct; 314(16):2919-29. PubMed ID: 18675800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways.
    Pijet M; Pijet B; Litwiniuk A; Pajak B; Gajkowska B; Orzechowski A
    Cytokine; 2013 Feb; 61(2):445-54. PubMed ID: 23201486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle.
    Pansters NA; Schols AM; Verhees KJ; de Theije CC; Snepvangers FJ; Kelders MC; Ubags ND; Haegens A; Langen RC
    Biochim Biophys Acta; 2015 Mar; 1852(3):490-506. PubMed ID: 25496993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.