These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17977881)

  • 1. A computational strategy for the prediction of functional linear peptide motifs in proteins.
    Dinkel H; Sticht H
    Bioinformatics; 2007 Dec; 23(24):3297-303. PubMed ID: 17977881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein-peptide interactions via a network-based motif sampler.
    Reiss DJ; Schwikowski B
    Bioinformatics; 2004 Aug; 20 Suppl 1():i274-82. PubMed ID: 15262809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative approach for predicting interactions of protein regions.
    Schelhorn SE; Lengauer T; Albrecht M
    Bioinformatics; 2008 Aug; 24(16):i35-41. PubMed ID: 18689837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of short linear protein binding regions.
    Mooney C; Pollastri G; Shields DC; Haslam NJ
    J Mol Biol; 2012 Jan; 415(1):193-204. PubMed ID: 22079048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local structural disorder imparts plasticity on linear motifs.
    Fuxreiter M; Tompa P; Simon I
    Bioinformatics; 2007 Apr; 23(8):950-6. PubMed ID: 17387114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of stable and significant binding motif pairs from PDB complexes and protein interaction datasets.
    Li H; Li J
    Bioinformatics; 2005 Feb; 21(3):314-24. PubMed ID: 15374856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equivalent binding sites reveal convergently evolved interaction motifs.
    Henschel A; Kim WK; Schroeder M
    Bioinformatics; 2006 Mar; 22(5):550-5. PubMed ID: 16287935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using structural motif descriptors for sequence-based binding site prediction.
    Henschel A; Winter C; Kim WK; Schroeder M
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S5. PubMed ID: 17570148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved network motifs allow protein-protein interaction prediction.
    Albert I; Albert R
    Bioinformatics; 2004 Dec; 20(18):3346-52. PubMed ID: 15247093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of function-associated loop motifs and application to protein function prediction.
    Espadaler J; Querol E; Aviles FX; Oliva B
    Bioinformatics; 2006 Sep; 22(18):2237-43. PubMed ID: 16870939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel knowledge-based approach to design inorganic-binding peptides.
    Oren EE; Tamerler C; Sahin D; Hnilova M; Seker UO; Sarikaya M; Samudrala R
    Bioinformatics; 2007 Nov; 23(21):2816-22. PubMed ID: 17875545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-templated predictions of novel protein interactions from sequence information.
    Betel D; Breitkreuz KE; Isserlin R; Dewar-Darch D; Tyers M; Hogue CW
    PLoS Comput Biol; 2007 Sep; 3(9):1783-9. PubMed ID: 17892321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ensemble of K-local hyperplanes for predicting protein-protein interactions.
    Nanni L; Lumini A
    Bioinformatics; 2006 May; 22(10):1207-10. PubMed ID: 16481334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular surface contacts contain information about protein-protein interface regions.
    de Vries SJ; Bonvin AM
    Bioinformatics; 2006 Sep; 22(17):2094-8. PubMed ID: 16766554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A regularized discriminative model for the prediction of protein-peptide interactions.
    Lehrach WP; Husmeier D; Williams CK
    Bioinformatics; 2006 Mar; 22(5):532-40. PubMed ID: 16397010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.