BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

816 related articles for article (PubMed ID: 17977928)

  • 1. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of cellular and synaptic variability in the lamprey spinal cord.
    Parker D; Bevan S
    J Neurophysiol; 2007 Jan; 97(1):44-56. PubMed ID: 17021027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat.
    Ballion B; Morin D; Viala D
    Eur J Neurosci; 2001 Nov; 14(10):1727-38. PubMed ID: 11860467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord.
    Cowley KC; Zaporozhets E; Joundi RA; Schmidt BJ
    J Neurophysiol; 2009 Mar; 101(3):1171-8. PubMed ID: 19118107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossed rhythmic synaptic input to motoneurons during selective activation of the contralateral spinal locomotor network.
    Kjaerulff O; Kiehn O
    J Neurosci; 1997 Dec; 17(24):9433-47. PubMed ID: 9390999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse Hb9 interneurons.
    Wilson JM; Cowan AI; Brownstone RM
    J Neurophysiol; 2007 Oct; 98(4):2370-81. PubMed ID: 17715199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of group II and III metabotropic glutamate receptors in rhythmic patterns of the neonatal rat spinal cord in vitro.
    Taccola G; Marchetti C; Nistri A
    Exp Brain Res; 2004 Jun; 156(4):495-504. PubMed ID: 15007577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor-related activity of GABAergic interneurons localized in the ventrolateral region in the isolated spinal cord of neonatal mice.
    Nishimaru H; Sakagami H; Kakizaki M; Yanagawa Y
    J Neurophysiol; 2011 Oct; 106(4):1782-92. PubMed ID: 21734105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord.
    Christie KJ; Whelan PJ
    J Neurophysiol; 2005 Aug; 94(2):1554-64. PubMed ID: 15829596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmitter phenotypes of commissural interneurons in the lamprey spinal cord.
    Mahmood R; Restrepo CE; El Manira A
    Neuroscience; 2009 Dec; 164(3):1057-67. PubMed ID: 19737601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures.
    Tscherter A; Heuschkel MO; Renaud P; Streit J
    Eur J Neurosci; 2001 Jul; 14(2):179-90. PubMed ID: 11553271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of the electrical oscillations evoked by 4-aminopyridine on dorsal root fibers and their relation to fictive locomotor patterns in the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2005; 132(4):1187-97. PubMed ID: 15857720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory rhythms generated in the lamprey rhombencephalon.
    Martel B; Guimond JC; GariƩpy JF; Gravel J; Auclair F; Kolta A; Lund JP; Dubuc R
    Neuroscience; 2007 Aug; 148(1):279-93. PubMed ID: 17618060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hemicord locomotor network of excitatory interneurons: a simulation study.
    Kozlov AK; Lansner A; Grillner S; Kotaleski JH
    Biol Cybern; 2007 Feb; 96(2):229-43. PubMed ID: 17180687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.