BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17978174)

  • 21. Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain.
    Cho EJ; Rodriguez CR; Takagi T; Buratowski S
    Genes Dev; 1998 Nov; 12(22):3482-7. PubMed ID: 9832501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo.
    Takase Y; Takagi T; Komarnitsky PB; Buratowski S
    Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription.
    Komarnitsky P; Cho EJ; Buratowski S
    Genes Dev; 2000 Oct; 14(19):2452-60. PubMed ID: 11018013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II.
    Schroeder SC; Zorio DA; Schwer B; Shuman S; Bentley D
    Mol Cell; 2004 Feb; 13(3):377-87. PubMed ID: 14967145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription elongation factor hSPT5 stimulates mRNA capping.
    Wen Y; Shatkin AJ
    Genes Dev; 1999 Jul; 13(14):1774-9. PubMed ID: 10421630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-function analysis of the triphosphatase component of vaccinia virus mRNA capping enzyme.
    Yu L; Martins A; Deng L; Shuman S
    J Virol; 1997 Dec; 71(12):9837-43. PubMed ID: 9371657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analyses of yeast RNA triphosphatases highlight a common mechanism of metal-dependent NTP hydrolysis and a means of targeting enzymes to pre-mRNAs in vivo by fusion to the guanylyltransferase component of the capping apparatus.
    Pei Y; Ho CK; Schwer B; Shuman S
    J Biol Chem; 1999 Oct; 274(41):28865-74. PubMed ID: 10506129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HIV-1 Tat protein interacts with mammalian capping enzyme and stimulates capping of TAR RNA.
    Chiu YL; Coronel E; Ho CK; Shuman S; Rana TM
    J Biol Chem; 2001 Apr; 276(16):12959-66. PubMed ID: 11278368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II.
    Fabrega C; Shen V; Shuman S; Lima CD
    Mol Cell; 2003 Jun; 11(6):1549-61. PubMed ID: 12820968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The yeast capping enzyme represses RNA polymerase II transcription.
    Myers LC; Lacomis L; Erdjument-Bromage H; Tempst P
    Mol Cell; 2002 Oct; 10(4):883-94. PubMed ID: 12419231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vaccinia virus capping enzyme is a transcription initiation factor.
    Vos JC; Sasker M; Stunnenberg HG
    EMBO J; 1991 Sep; 10(9):2553-8. PubMed ID: 1651230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA polymerases IIA and IIO have distinct roles during transcription from the TATA-less murine dihydrofolate reductase promoter.
    Kang ME; Dahmus ME
    J Biol Chem; 1993 Nov; 268(33):25033-40. PubMed ID: 8227067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II.
    Rodriguez CR; Cho EJ; Keogh MC; Moore CL; Greenleaf AL; Buratowski S
    Mol Cell Biol; 2000 Jan; 20(1):104-12. PubMed ID: 10594013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus.
    Lehman K; Schwer B; Ho CK; Rouzankina I; Shuman S
    J Biol Chem; 1999 Aug; 274(32):22668-78. PubMed ID: 10428848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD.
    Emili A; Shales M; McCracken S; Xie W; Tucker PW; Kobayashi R; Blencowe BJ; Ingles CJ
    RNA; 2002 Sep; 8(9):1102-11. PubMed ID: 12358429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control.
    Pei Y; Schwer B; Shuman S
    J Biol Chem; 2003 Feb; 278(9):7180-8. PubMed ID: 12475973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing.
    Zeng C; Berget SM
    Mol Cell Biol; 2000 Nov; 20(21):8290-301. PubMed ID: 11027297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of the C-terminal domain of RNA polymerase II.
    Dahmus ME
    Biochim Biophys Acta; 1995 Apr; 1261(2):171-82. PubMed ID: 7711060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topological localization of the carboxyl-terminal domain of RNA polymerase II in the initiation complex.
    Douziech M; Forget D; Greenblatt J; Coulombe B
    J Biol Chem; 1999 Jul; 274(28):19868-73. PubMed ID: 10391932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation.
    Sen R; Kaja A; Ferdoush J; Lahudkar S; Barman P; Bhaumik SR
    Mol Cell Biol; 2017 Jul; 37(13):. PubMed ID: 28396559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.