These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17978174)

  • 41. The CTD role in cotranscriptional RNA processing and surveillance.
    de Almeida SF; Carmo-Fonseca M
    FEBS Lett; 2008 Jun; 582(14):1971-6. PubMed ID: 18435923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1.
    Chun RF; Jeang KT
    J Biol Chem; 1996 Nov; 271(44):27888-94. PubMed ID: 8910388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catalytic activity of vaccinia mRNA capping enzyme subunits coexpressed in Escherichia coli.
    Shuman S
    J Biol Chem; 1990 Jul; 265(20):11960-6. PubMed ID: 2164022
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNA-binding proteins and heat-shock protein 90 are constituents of the cytoplasmic capping enzyme interactome.
    Trotman JB; Agana BA; Giltmier AJ; Wysocki VH; Schoenberg DR
    J Biol Chem; 2018 Oct; 293(43):16596-16607. PubMed ID: 30166341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The essential role for the RNA triphosphatase Cet1p in nuclear import of the mRNA capping enzyme Cet1p-Ceg1p complex of Saccharomyces cerevisiae.
    Takizawa N; Fujiwara T; Yamasaki M; Saito A; Fukao A; Nomoto A; Mizumoto K
    PLoS One; 2013; 8(10):e78000. PubMed ID: 24205062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. mRNA capping enzyme activity is coupled to an early transcription elongation.
    Kim HJ; Jeong SH; Heo JH; Jeong SJ; Kim ST; Youn HD; Han JW; Lee HW; Cho EJ
    Mol Cell Biol; 2004 Jul; 24(14):6184-93. PubMed ID: 15226422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression.
    Hirose Y; Ohkuma Y
    J Biochem; 2007 May; 141(5):601-8. PubMed ID: 17405796
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle.
    Lin PS; Tremeau-Bravard A; Dahmus ME
    Chem Rec; 2003; 3(4):235-45. PubMed ID: 14595832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Domain structure of vaccinia virus mRNA capping enzyme. Activity of the Mr 95,000 subunit expressed in Escherichia coli.
    Shuman S; Morham SG
    J Biol Chem; 1990 Jul; 265(20):11967-72. PubMed ID: 2164023
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II.
    Fraser KA; Rice SA
    J Virol; 2005 Sep; 79(17):11323-34. PubMed ID: 16103184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA 5'-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein.
    Gross CH; Shuman S
    J Virol; 1998 Dec; 72(12):10020-8. PubMed ID: 9811740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II.
    Comer FI; Hart GW
    Biochemistry; 2001 Jul; 40(26):7845-52. PubMed ID: 11425311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural insights into human co-transcriptional capping.
    Garg G; Dienemann C; Farnung L; Schwarz J; Linden A; Urlaub H; Cramer P
    Mol Cell; 2023 Jul; 83(14):2464-2477.e5. PubMed ID: 37369200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA binding properties of vaccinia virus capping enzyme.
    Luo Y; Shuman S
    J Biol Chem; 1993 Oct; 268(28):21253-62. PubMed ID: 8407963
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The domain order of mammalian capping enzyme can be inverted and baculovirus phosphatase can function in cap formation in vivo.
    Martins A; Shuman S
    Virology; 2002 Dec; 304(2):167-75. PubMed ID: 12504559
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional coupling of capping and transcription of mRNA.
    Moteki S; Price D
    Mol Cell; 2002 Sep; 10(3):599-609. PubMed ID: 12408827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus.
    Ho CK; Schwer B; Shuman S
    Mol Cell Biol; 1998 Sep; 18(9):5189-98. PubMed ID: 9710603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pin1 modulates RNA polymerase II activity during the transcription cycle.
    Xu YX; Manley JL
    Genes Dev; 2007 Nov; 21(22):2950-62. PubMed ID: 18006688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Apoptosis and autophagy induction in mammalian cells by small interfering RNA knockdown of mRNA capping enzymes.
    Chu C; Shatkin AJ
    Mol Cell Biol; 2008 Oct; 28(19):5829-36. PubMed ID: 18678651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.