BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17978652)

  • 1. Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine: a biomechanical porcine and human cadaveric study.
    Kouwenhoven JW; Smit TH; van der Veen AJ; Kingma I; van Dieën JH; Castelein RM
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2545-50. PubMed ID: 17978652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of posteriorly directed shear loads acting on a pre-rotated growing spine: a hypothesis on the pathogenesis of idiopathic scoliosis.
    Janssen MM; Kouwenhoven JW; Castelein RM
    Stud Health Technol Inform; 2010; 158():112-7. PubMed ID: 20543410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical examination of the thoracic spine--the axial rotation moment and vertical loading capacity of the transverse process.
    Csernátony Z; Molnár S; Hunya Z; Manó S; Kiss L
    J Orthop Res; 2011 Dec; 29(12):1904-9. PubMed ID: 21647957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex vivo and in vitro determination of the axial rotational axis of the human thoracic spine.
    Molnár S; Manó S; Kiss L; Csernátony Z
    Spine (Phila Pa 1976); 2006 Dec; 31(26):E984-91. PubMed ID: 17172989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments.
    Busscher I; van der Veen AJ; van Dieën JH; Kingma I; Verkerke GJ; Veldhuizen AG
    Spine (Phila Pa 1976); 2010 Jan; 35(2):E35-42. PubMed ID: 20081499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical comparison of the screw-bone interface: optimization of 1 and 2 screw constructs by varying screw diameter.
    Mohamad F; Oka R; Mahar A; Wedemeyer M; Newton P
    Spine (Phila Pa 1976); 2006 Jul; 31(16):E535-9. PubMed ID: 16845339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue failure in shear loading of porcine lumbar spine segments.
    van Dieën JH; van der Veen A; van Royen BJ; Kingma I
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E494-8. PubMed ID: 16816749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thoracolumbar spine mechanics contrasted under compression and shear loading.
    Frei H; Oxland TR; Nolte LP
    J Orthop Res; 2002 Nov; 20(6):1333-8. PubMed ID: 12472249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the direction of pedicle screw rotation affect the biomechanics of direct transverse plane vertebral derotation?
    Parent S; Odell T; Oka R; Mahar A; Newton P
    Spine (Phila Pa 1976); 2008 Aug; 33(18):1966-9. PubMed ID: 18708929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws.
    Kuklo TR; Dmitriev AE; Cardoso MJ; Lehman RA; Erickson M; Gill NW
    Spine (Phila Pa 1976); 2008 Jul; 33(15):E482-7. PubMed ID: 18594445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-existent vertebral rotation in the human spine is influenced by body position.
    Janssen MM; Vincken KL; Kemp B; Obradov M; De Kleuver M; Viergever MA; Castelein RM; Bartels LW
    Stud Health Technol Inform; 2010; 158():67-71. PubMed ID: 20543402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical contribution of the rib cage to thoracic stability.
    Brasiliense LB; Lazaro BC; Reyes PM; Dogan S; Theodore N; Crawford NR
    Spine (Phila Pa 1976); 2011 Dec; 36(26):E1686-93. PubMed ID: 22138782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads.
    Li XF; Liu ZD; Dai LY; Zhong GB; Zang WP
    Spine (Phila Pa 1976); 2011 Apr; 36(7):521-8. PubMed ID: 21079543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thoracic spine centers of rotation in the sagittal plane.
    Panjabi MM; Krag MH; Dimnet JC; Walter SD; Brand RA
    J Orthop Res; 1984; 1(4):387-94. PubMed ID: 6491788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation.
    Cheng BC; Hafez MA; Cunningham B; Serhan H; Welch WC
    Spine J; 2008; 8(5):821-6. PubMed ID: 17981098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of T10-T11 finite element model and determination of instantaneous axes of rotations in three anatomical planes.
    Qiu TX; Teo EC; Lee KK; Ng HW; Yang K
    Spine (Phila Pa 1976); 2003 Dec; 28(24):2694-9. PubMed ID: 14673371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary biomechanical evaluation of prophylactic vertebral reinforcement adjacent to vertebroplasty under cyclic loading.
    Oakland RJ; Furtado NR; Wilcox RK; Timothy J; Hall RM
    Spine J; 2009 Feb; 9(2):174-81. PubMed ID: 18640876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics of the thoracic spine in trunk rotation: in vivo 3-dimensional analysis.
    Fujimori T; Iwasaki M; Nagamoto Y; Ishii T; Kashii M; Murase T; Sugiura T; Matsuo Y; Sugamoto K; Yoshikawa H
    Spine (Phila Pa 1976); 2012 Oct; 37(21):E1318-28. PubMed ID: 22772578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of lumbar spine loads and motions during rotational mobilization.
    Tsung BY; Evans J; Tong P; Lee RY
    J Manipulative Physiol Ther; 2005 May; 28(4):238-44. PubMed ID: 15883576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system.
    Crisco JJ; Fujita L; Spenciner DB
    J Biomech; 2007; 40(12):2767-73. PubMed ID: 17367798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.