These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 17978760)
41. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures. Chen H; Virk MS; Chen F Int J Food Sci Nutr; 2016 Jun; 67(4):400-11. PubMed ID: 27102241 [TBL] [Abstract][Full Text] [Related]
42. Antioxidant properties of complexes of flavonoids with metal ions. de Souza RF; De Giovani WF Redox Rep; 2004; 9(2):97-104. PubMed ID: 15231064 [TBL] [Abstract][Full Text] [Related]
43. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau. Yang XJ; Dang B; Fan MT Molecules; 2018 Apr; 23(4):. PubMed ID: 29641469 [TBL] [Abstract][Full Text] [Related]
45. Chemical Properties of Caffeic and Ferulic Acids in Biological System: Implications in Cancer Therapy. A Review. Damasceno SS; Dantas BB; Ribeiro-Filho J; Antônio M Araújo D; Galberto M da Costa J Curr Pharm Des; 2017; 23(20):3015-3023. PubMed ID: 27928956 [TBL] [Abstract][Full Text] [Related]
46. Radical-scavenging activity of hot water extract of Japanese rice bran--association with phenolic acids. Okai Y; Higashi-Okai K J UOEH; 2006 Mar; 28(1):1-12. PubMed ID: 16541736 [TBL] [Abstract][Full Text] [Related]
47. Comparison of phenolic content and antioxidant activity of Actaea racemosa L. and Actaea cordifolia DC. Szymczak G; Wójciak-Kosior M; Sowa I; Zapała K; Bogucka-Kocka A Nat Prod Res; 2015; 29(12):1149-52. PubMed ID: 25427941 [TBL] [Abstract][Full Text] [Related]
48. Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. Silva FA; Borges F; Guimarães C; Lima JL; Matos C; Reis S J Agric Food Chem; 2000 Jun; 48(6):2122-6. PubMed ID: 10888509 [TBL] [Abstract][Full Text] [Related]
49. Contact probe voltammetry for in situ monitoring of the reactivity of phenolic tomato (Solanum lycopersicum L.) compounds with ROS. Doménech-Carbó A; Gavara R; Hernández-Muñoz P; Domínguez I Talanta; 2015 Nov; 144():1207-15. PubMed ID: 26452949 [TBL] [Abstract][Full Text] [Related]
50. Antioxidant and DNA damage protection potentials of selected phenolic acids. Sevgi K; Tepe B; Sarikurkcu C Food Chem Toxicol; 2015 Mar; 77():12-21. PubMed ID: 25542528 [TBL] [Abstract][Full Text] [Related]
51. Polyphenol contents and antioxidant activity of Brassica nigra (L.) Koch. leaf extract. Rajamurugan R; Selvaganabathy N; Kumaravel S; Ramamurthy Ch; Sujatha V; Thirunavukkarasu C Nat Prod Res; 2012; 26(23):2208-10. PubMed ID: 22103437 [TBL] [Abstract][Full Text] [Related]
52. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures. Moyo M; Amoo SO; Aremu AO; Gruz J; Subrtová M; Doležal K; Van Staden J Plant Sci; 2014 Oct; 227():157-64. PubMed ID: 25219317 [TBL] [Abstract][Full Text] [Related]
53. The study of some polyphenolic compounds from Melissa officinalis L. (Lamiaceae). Hanganu D; Vlase L; Filip L; Sand C; Mirel S; Indrei LL Rev Med Chir Soc Med Nat Iasi; 2008; 112(2):525-9. PubMed ID: 19295032 [TBL] [Abstract][Full Text] [Related]
54. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Kim DO; Lee CY Crit Rev Food Sci Nutr; 2004; 44(4):253-73. PubMed ID: 15462129 [TBL] [Abstract][Full Text] [Related]
55. Phenolic compounds from the flowers of Nepalese medicinal plant Aconogonon molle and their DPPH free radical-scavenging activities. Joshi KR; Devkota HP; Watanabe T; Yahara S Nat Prod Res; 2014; 28(23):2208-10. PubMed ID: 24825068 [TBL] [Abstract][Full Text] [Related]
56. Assessment of total (free and bound) phenolic compounds in spent coffee extracts. Monente C; Ludwig IA; Irigoyen A; De Peña MP; Cid C J Agric Food Chem; 2015 May; 63(17):4327-34. PubMed ID: 25891228 [TBL] [Abstract][Full Text] [Related]
57. Characterization of increased phenolic compounds from fermented Bokbunja (Rubus coreanus Miq.) and related antioxidant activity. Ju HK; Cho EJ; Jang MH; Lee YY; Hong SS; Park JH; Kwon SW J Pharm Biomed Anal; 2009 Apr; 49(3):820-7. PubMed ID: 19179032 [TBL] [Abstract][Full Text] [Related]
58. Antioxidant activities of aqueous extract from Agrimonia pilosa Ledeb and its fractions. Zhu L; Tan J; Wang B; He R; Liu Y; Zheng C Chem Biodivers; 2009 Oct; 6(10):1716-26. PubMed ID: 19842137 [TBL] [Abstract][Full Text] [Related]
59. Identification of a potent xanthine oxidase inhibitor from oxidation of caffeic acid. Masuda T; Shingai Y; Takahashi C; Inai M; Miura Y; Honda S; Masuda A Free Radic Biol Med; 2014 Apr; 69():300-7. PubMed ID: 24503177 [TBL] [Abstract][Full Text] [Related]
60. [Contribution to the phytochemical study of polyphenols in ten hydroalcoholic extracts of Chamomile floss]. Cioancă O; Hăncianu M; Spac A; Miron A; Stănescu U Rev Med Chir Soc Med Nat Iasi; 2009; 113(2):604-9. PubMed ID: 21495375 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]