These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17979370)

  • 1. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study.
    Kan EJ; Xiang HJ; Yang J; Hou JG
    J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons.
    Liu ZM; Zhu Y; Yang ZQ
    J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-metallicity in edge-modified zigzag graphene nanoribbons.
    Kan EJ; Li Z; Yang J; Hou JG
    J Am Chem Soc; 2008 Apr; 130(13):4224-5. PubMed ID: 18331034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons.
    Pollack A; Alnemrat S; Chamberlain TW; Khlobystov AN; Hooper JP; Osswald S
    Small; 2014 Dec; 10(24):5077-86. PubMed ID: 25123503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Half-metallic graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Nature; 2006 Nov; 444(7117):347-9. PubMed ID: 17108960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons.
    Chen X; Wang H; Wan H; Song K; Zhou G
    J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-metallicity in hybrid BCN nanoribbons.
    Kan EJ; Wu X; Li Z; Zeng XC; Yang J; Hou JG
    J Chem Phys; 2008 Aug; 129(8):084712. PubMed ID: 19044846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic half-metallicity in modified graphene nanoribbons.
    Dutta S; Manna AK; Pati SK
    Phys Rev Lett; 2009 Mar; 102(9):096601. PubMed ID: 19392544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions.
    Dutta S; Pati SK
    J Phys Chem B; 2008 Feb; 112(5):1333-5. PubMed ID: 18189386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons.
    Botello-Méndez AR; López-Urías F; Terrones M; Terrones H
    Nanotechnology; 2009 Aug; 20(32):325703. PubMed ID: 19620764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.