These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17979370)

  • 21. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-narrow metallic armchair graphene nanoribbons.
    Kimouche A; Ervasti MM; Drost R; Halonen S; Harju A; Joensuu PM; Sainio J; Liljeroth P
    Nat Commun; 2015 Dec; 6():10177. PubMed ID: 26658960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons.
    Cocchi C; Prezzi D; Calzolari A; Molinari E
    J Chem Phys; 2010 Sep; 133(12):124703. PubMed ID: 20886961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ab initio characterization of graphene nanoribbons and their polymer precursors.
    Peköz R; Feng X; Donadio D
    J Phys Condens Matter; 2012 Mar; 24(10):104023. PubMed ID: 22353922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons.
    Qi Z; Zhao F; Zhou X; Sun Z; Park HS; Wu H
    Nanotechnology; 2010 Jul; 21(26):265702. PubMed ID: 20522927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling half-metallicity of graphene nanoribbons by using a ferroelectric polymer.
    Lee YL; Kim S; Park C; Ihm J; Son YW
    ACS Nano; 2010 Mar; 4(3):1345-50. PubMed ID: 20192235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inducing metallicity in graphene nanoribbons via zero-mode superlattices.
    Rizzo DJ; Veber G; Jiang J; McCurdy R; Cao T; Bronner C; Chen T; Louie SG; Fischer FR; Crommie MF
    Science; 2020 Sep; 369(6511):1597-1603. PubMed ID: 32973025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L; Lu J
    Nanoscale; 2011 Jun; 3(6):2583-8. PubMed ID: 21552611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic transport through side-contacted graphene nanoribbons: effects of overlap, aspect ratio and orientation.
    Krompiewski S
    Nanotechnology; 2011 Nov; 22(44):445201. PubMed ID: 21975438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.
    Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C
    ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100).
    Radocea A; Sun T; Vo TH; Sinitskii A; Aluru NR; Lyding JW
    Nano Lett; 2017 Jan; 17(1):170-178. PubMed ID: 27936761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties.
    Li Y; Zhou Z; Zhang S; Chen Z
    J Am Chem Soc; 2008 Dec; 130(49):16739-44. PubMed ID: 19554733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction.
    Jiang L; Liu Z; Zhao X; Zheng Y
    J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q; Chang S; Kang J; Tan J; Qin S; Li J
    J Chem Phys; 2012 Jun; 136(24):244702. PubMed ID: 22755594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Switching and rectification of a single light-sensitive diarylethene molecule sandwiched between graphene nanoribbons.
    Cai Y; Zhang A; Feng YP; Zhang C
    J Chem Phys; 2011 Nov; 135(18):184703. PubMed ID: 22088074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.