These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 17979375)

  • 1. Theoretical study of pattern formation during the catalytic oxidation of CO on Pt{100} at low pressures.
    Anghel AT; Hoyle RB; Irurzun IM; Proctor MR; King DA
    J Chem Phys; 2007 Oct; 127(16):164711. PubMed ID: 17979375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111).
    Gerrard AL; Weaver JF
    J Chem Phys; 2005 Dec; 123(22):224703. PubMed ID: 16375491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Front waves in the NO + NH3 reaction on Pt{100}.
    Irurzun IM; Mola EE; Imbihl R
    J Phys Chem A; 2007 May; 111(17):3313-20. PubMed ID: 17417826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillations, period doublings, and chaos in CO oxidation and catalytic mufflers.
    Marek M; Schejbal M; Kocí P; Nevoral V; Kubícek M; Hadac O; Schreiber I
    Chaos; 2006 Sep; 16(3):037107. PubMed ID: 17014241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal pattern formation during CO oxidation on Pt(100) at low and intermediate pressures: A comparative study.
    Lele T; Lauterbach J
    Chaos; 2002 Mar; 12(1):164-171. PubMed ID: 12779544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model.
    Alas SJ; Zgrablich G
    J Phys Chem B; 2006 May; 110(19):9499-510. PubMed ID: 16686496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced low-temperature CO oxidation on a stepped platinum surface for oxygen pressures above 10(-5) Torr.
    Lewis HD; Burnett DJ; Gabelnick AM; Fischer DA; Gland JL
    J Phys Chem B; 2005 Nov; 109(46):21847-57. PubMed ID: 16853838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of CO by SO2: a theoretical study.
    Bacskay GB; Mackie JC
    J Phys Chem A; 2005 Mar; 109(9):2019-25. PubMed ID: 16833537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of a crossover from the precipitation wave to moving Liesegang pattern formation.
    Izsák F; Lagzi I
    J Phys Chem A; 2005 Feb; 109(5):730-3. PubMed ID: 16838940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water formation reaction on Pt(111): role of the proton transfer.
    Nagasaka M; Kondoh H; Ohta T
    J Chem Phys; 2005 May; 122(20):204704. PubMed ID: 15945761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling collective behavior of molecules in nanoscale direct deposition processes.
    Lee NK; Hong S
    J Chem Phys; 2006 Mar; 124(11):114711. PubMed ID: 16555914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the effect of surface-oxide formation on bistability in CO oxidation on Pt-group metals.
    Zhdanov VP
    J Chem Phys; 2007 Feb; 126(7):074706. PubMed ID: 17328626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of spiral wave attenuation by low-frequency periodic planar fronts.
    de la Casa MA; de la Rubia FJ; Ivanov PCh
    Chaos; 2007 Mar; 17(1):015109. PubMed ID: 17411266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling of methyl butanoate in shock tube.
    Huynh LK; Lin KC; Violi A
    J Phys Chem A; 2008 Dec; 112(51):13470-80. PubMed ID: 19035670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the dynamics of the H+CH4 and H+C2H6 reactions using a specific-reaction-parameter semiempirical Hamiltonian.
    Layfield JP; Owens MD; Troya D
    J Chem Phys; 2008 May; 128(19):194302. PubMed ID: 18500860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal self-organization in a surface reaction: from the atomic to the mesoscopic scale.
    Sachs C; Hildebrand M; Volkening S; Wintterlin J; Ertl G
    Science; 2001 Aug; 293(5535):1635-8. PubMed ID: 11533484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern formation during the oxidation of CO on Pt{100}: a mesoscopic model.
    Hoyle RB; Anghel AT; Proctor MR; King DA
    Phys Rev Lett; 2007 Jun; 98(22):226102. PubMed ID: 17677863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern formation during the CO-oxidation involving subsurface oxygen.
    Rotermund HH; Pollmann M; Kevrekidis IG
    Chaos; 2002 Mar; 12(1):157-163. PubMed ID: 12779543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.