BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 17979384)

  • 1. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.
    Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV
    J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Different Approaches to the Determination of the Work of Critical Cluster Formation.
    Baidakov VG; Boltashev GS; Schmelzer JW
    J Colloid Interface Sci; 2000 Nov; 231(2):312-321. PubMed ID: 11049681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range.
    Gloor GJ; Jackson G; Blas FJ; Del Río EM; de Miguel E
    J Chem Phys; 2004 Dec; 121(24):12740-59. PubMed ID: 15606300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory of inhomogeneous liquids. III. Liquid-vapor nucleation.
    Lutsko JF
    J Chem Phys; 2008 Dec; 129(24):244501. PubMed ID: 19123511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous nucleation of n-nonane and n-propanol mixtures: a comparison of classical nucleation theory and experiments.
    Gaman AI; Napari I; Winkler PM; Vehkamäki H; Wagner PE; Strey R; Viisanen Y; Kulmala M
    J Chem Phys; 2005 Dec; 123(24):244502. PubMed ID: 16396544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface tension of a Lennard-Jones liquid under supersaturation.
    He S; Attard P
    Phys Chem Chem Phys; 2005 Aug; 7(15):2928-35. PubMed ID: 16189613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of critical cluster sizes and nucleation rates of water.
    Merikanto J; Vehkamaki H; Zapadinsky E
    J Chem Phys; 2004 Jul; 121(2):914-24. PubMed ID: 15260623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory of size-dependent surface tension of Lennard-Jones fluid droplets using a double well type Helmholtz free energy functional.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Sep; 135(12):124710. PubMed ID: 21974555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous nucleation: classical formulas as asymptotic limits of the Cahn-Hilliard approach.
    Parra IE; Cordero-Gracia M; Gómez M
    J Chem Phys; 2007 Feb; 126(5):054512. PubMed ID: 17302490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous nucleation rates of higher n-alcohols measured in a laminar flow diffusion chamber.
    Hyvärinen AP; Lihavainen H; Viisanen Y; Kulmala M
    J Chem Phys; 2004 Jun; 120(24):11621-33. PubMed ID: 15268196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface tension and scaling of critical nuclei in diatomic and triatomic fluids.
    Napari I; Laaksonen A
    J Chem Phys; 2007 Apr; 126(13):134503. PubMed ID: 17430043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic theory of binary nucleation based on a first passage time analysis.
    Djikaev Y; Ruckenstein E
    J Chem Phys; 2006 Mar; 124(12):124521. PubMed ID: 16599711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.