These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 17979402)

  • 1. Performance trade-offs in single-photon avalanche diode miniaturization.
    Finkelstein H; Hsu MJ; Zlatanovic S; Esener S
    Rev Sci Instrum; 2007 Oct; 78(10):103103. PubMed ID: 17979402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operation of silicon single photon avalanche diodes at cryogenic temperature.
    Rech I; Labanca I; Armellini G; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Jun; 78(6):063105. PubMed ID: 17614603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new single-photon avalanche diode in 90nm standard CMOS technology.
    Karami MA; Gersbach M; Yoon HJ; Charbon E
    Opt Express; 2010 Oct; 18(21):22158-66. PubMed ID: 20941117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-suppression of reset induced triggering in picosecond SPAD timing circuits.
    Rech I; Resnati D; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Aug; 78(8):086112. PubMed ID: 17764372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel avalanche photodiode for single photon detection in VIS-NIR range.
    Stipcević M; Skenderović H; Gracin D
    Opt Express; 2010 Aug; 18(16):17448-59. PubMed ID: 20721130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Note: Dead time causes and correction method for single photon avalanche diode devices.
    Neri L; Tudisco S; Musumeci F; Scordino A; Fallica G; Mazzillo M; Zimbone M
    Rev Sci Instrum; 2010 Aug; 81(8):086102. PubMed ID: 20815631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 10 ps resolution, 160 ns full scale range and less than 1.5% differential non-linearity time-to-digital converter module for high performance timing measurements.
    Markovic B; Tamborini D; Villa F; Tisa S; Tosi A; Zappa F
    Rev Sci Instrum; 2012 Jul; 83(7):074703. PubMed ID: 22852708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widefield High Frame Rate Single-Photon SPAD Imagers for SPIM-FCS.
    Buchholz J; Krieger J; Bruschini C; Burri S; Ardelean A; Charbon E; Langowski J
    Biophys J; 2018 May; 114(10):2455-2464. PubMed ID: 29753448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultra low-power CMOS automatic action potential detector.
    Gosselin B; Sawan M
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):346-53. PubMed ID: 19366647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchips and single-photon avalanche diodes for DNA separation with high sensitivity.
    Rech I; Cova S; Restelli A; Ghioni M; Chiari M; Cretich M
    Electrophoresis; 2006 Oct; 27(19):3797-804. PubMed ID: 17031786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-photon imaging in complementary metal oxide semiconductor processes.
    Charbon E
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2012):20130100. PubMed ID: 24567470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.
    Singh AP; Krieger JW; Buchholz J; Charbon E; Langowski J; Wohland T
    Opt Express; 2013 Apr; 21(7):8652-68. PubMed ID: 23571955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of the micro-PIC gaseous area detector in small-angle X-ray scattering experiments.
    Hattori K; Tsuchiya K; Ito K; Okada Y; Fujii K; Kubo H; Miuchi K; Takata M; Tanimori T; Uekusa H
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):231-6. PubMed ID: 19240335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization-based super-resolution microscopy with an sCMOS camera.
    Huang ZL; Zhu H; Long F; Ma H; Qin L; Liu Y; Ding J; Zhang Z; Luo Q; Zeng S
    Opt Express; 2011 Sep; 19(20):19156-68. PubMed ID: 21996858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device.
    Lee MJ; Sun P; Charbon E
    Opt Express; 2015 May; 23(10):13200-9. PubMed ID: 26074572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CMOS Time-to-Digital Converters for Biomedical Imaging Applications.
    Scott R; Jiang W; Deen MJ
    IEEE Rev Biomed Eng; 2023; 16():627-652. PubMed ID: 34166201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology.
    Mandai S; Fishburn MW; Maruyama Y; Charbon E
    Opt Express; 2012 Mar; 20(6):5849-57. PubMed ID: 22418462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.