BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17979722)

  • 1. Modification of apatite materials for bone tissue engineering and drug delivery carriers.
    Matsumoto T; Okazaki M; Nakahira A; Sasaki J; Egusa H; Sohmura T
    Curr Med Chem; 2007; 14(25):2726-33. PubMed ID: 17979722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating of bone-like apatite for development of bioactive materials for bone reconstruction.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    Biomed Mater; 2007 Dec; 2(4):R17-23. PubMed ID: 18458474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering.
    Luo Y; Wu C; Lode A; Gelinsky M
    Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability.
    Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A
    J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification.
    Lan PX; Lee JW; Seol YJ; Cho DW
    J Mater Sci Mater Med; 2009 Jan; 20(1):271-9. PubMed ID: 18763023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering.
    Saber-Samandari S; Saber-Samandari S; Kiyazar S; Aghazadeh J; Sadeghi A
    Int J Biol Macromol; 2016 May; 86():434-42. PubMed ID: 26836617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-computed tomography (micro-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds.
    Oliveira AL; Malafaya PB; Costa SA; Sousa RA; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):211-23. PubMed ID: 17323152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly porous polymer-derived wollastonite-hydroxycarbonate apatite ceramics for bone regeneration.
    Fiocco L; Li S; Bernardo E; Stevens MM; Jones JR
    Biomed Mater; 2016 Apr; 11(2):025016. PubMed ID: 27066770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of geometrical structure on the in vivo quality change of a three-dimensionally perforated porous bone cell scaffold made of apatite/collagen composite.
    Otsuka M; Nakagawa H; Otsuka K; Ito A; Higuchi WI
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):338-45. PubMed ID: 23165697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroporous microbeads containing apatite-modified mesoporous bioactive glass nanofibres for bone tissue engineering applications.
    Hsu FY; Hsu HW; Chang YH; Yu JL; Rau LR; Tsai SW
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():346-354. PubMed ID: 29752107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications.
    El-Fiqi A; Buitrago JO; Yang SH; Kim HW
    Acta Biomater; 2017 Sep; 60():38-49. PubMed ID: 28754647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid.
    Oyane A; Uchida M; Choong C; Triffitt J; Jones J; Ito A
    Biomaterials; 2005 May; 26(15):2407-13. PubMed ID: 15585244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A scalable approach to obtain mesenchymal stem cells with osteogenic potency on apatite microcarriers.
    Feng J; Chong M; Chan J; Zhang Z; Teoh SH; Thian ES
    J Biomater Appl; 2014 Jul; 29(1):93-103. PubMed ID: 24327350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates.
    Ma J; Wang J; Ai X; Zhang S
    Biotechnol Adv; 2014; 32(4):744-60. PubMed ID: 24211471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tricalcium phosphate-Fluorapatite as bone tissue engineering: Evaluation of bioactivity and biocompatibility.
    Taktak R; Elghazel A; Bouaziz J; Charfi S; Keskes H
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():121-128. PubMed ID: 29525087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel bioactive materials with different mechanical properties.
    Kokubo T; Kim HM; Kawashita M
    Biomaterials; 2003 Jun; 24(13):2161-75. PubMed ID: 12699652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions.
    Wakae H; Takeuchi A; Udoh K; Matsuya S; Munar ML; LeGeros RZ; Nakasima A; Ishikawa K
    J Biomed Mater Res A; 2008 Dec; 87(4):957-63. PubMed ID: 18257056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of fibrous poly(butylene succinate)/wollastonite/apatite composite scaffolds by electrospinning and biomimetic process.
    Zhang D; Chang J; Zeng Y
    J Mater Sci Mater Med; 2008 Jan; 19(1):443-9. PubMed ID: 17607518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological evaluations of apatite-fiber scaffold cultured with mesenchymal stem cells by implantation at rat subcutaneous tissue.
    Suzuki K; Nagata K; Yokota T; Honda M; Aizawa M
    Biomed Mater Eng; 2017; 28(1):57-64. PubMed ID: 28269745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.