BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 17979724)

  • 1. Fluorescence fluctuation spectroscopic approaches to the study of a single molecule diffusing in solution and a live cell without systemic drift or convection: a theoretical study.
    Földes-Papp Z
    Curr Pharm Biotechnol; 2007 Oct; 8(5):261-73. PubMed ID: 17979724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'True' single-molecule molecule observations by fluorescence correlation spectroscopy and two-color fluorescence cross-correlation spectroscopy.
    Földes-Papp Z
    Exp Mol Pathol; 2007 Apr; 82(2):147-55. PubMed ID: 17258199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counting and behavior of an individual fluorescent molecule without hydrodynamic flow, immobilization, or photon count statistics.
    Földes-Papp Z; Baumann G; Demel U; Tilz GP
    Curr Pharm Biotechnol; 2004 Apr; 5(2):163-72. PubMed ID: 15078150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new concept for ultrasensitive fluorescence measurements of molecules in solution and membrane: 1. Theory and a first application.
    Földes-Papp Z; Demel U; Tilz GP
    J Immunol Methods; 2004 Mar; 286(1-2):1-11. PubMed ID: 15087217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of single molecules in solution and live cells over longer observation times than those currently possible: the meaningful time.
    Foldes-Papp Z
    Curr Pharm Biotechnol; 2013; 14(4):441-4. PubMed ID: 23369193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy.
    Földes-Papp Z
    Exp Mol Pathol; 2006 Jun; 80(3):209-18. PubMed ID: 16515783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the molecule number is correctly quantified in two-color fluorescence cross-correlation spectroscopy: corrections for cross-talk and quenching in experiments.
    Földes-Papp Z
    Curr Pharm Biotechnol; 2005 Dec; 6(6):437-44. PubMed ID: 16375728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The photon counting histogram in fluorescence fluctuation spectroscopy.
    Chen Y; Müller JD; So PT; Gratton E
    Biophys J; 1999 Jul; 77(1):553-67. PubMed ID: 10388780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence correlation spectroscopy for the detection and study of single molecules in biology.
    Medina MA; Schwille P
    Bioessays; 2002 Aug; 24(8):758-64. PubMed ID: 12210537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing background contributions in fluorescence fluctuation time-traces for single-molecule measurements in solution.
    Földes-Papp Z; Liao SC; You T; Barbieri B
    Curr Pharm Biotechnol; 2009 Aug; 10(5):532-42. PubMed ID: 19689322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian dynamics simulations of fluorescence fluctuation spectroscopy.
    Huertas de la Torre M; Forni R; Chirico G
    Eur Biophys J; 2001; 30(2):129-39. PubMed ID: 11409464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of molecular mobility with fluorescence correlation spectroscopy.
    Vámosi G; Damjanovich S; Szöllosi J; Vereb G
    Curr Protoc Cytom; 2009 Oct; Chapter 2():Unit2.15. PubMed ID: 19816923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous behavior in length distributions of 3D random Brownian walks and measured photon count rates within observation volumes of single-molecule trajectories in fluorescence fluctuation microscopy.
    Baumann G; Gryczynski I; Földes-Papp Z
    Opt Express; 2010 Aug; 18(17):17883-96. PubMed ID: 20721175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new dimension for the development of fluorescence-based assays in solution: from physical principles of FCS detection to biological applications.
    Földes-Papp Z; Demel U; Domej W; Tilz GP
    Exp Biol Med (Maywood); 2002 May; 227(5):291-300. PubMed ID: 11976399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence correlation spectroscopy detects galanin receptor diversity on insulinoma cells.
    Pramanik A; Olsson M; Langel U ; Bartfai T; Rigler R
    Biochemistry; 2001 Sep; 40(36):10839-45. PubMed ID: 11535060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy.
    Chen F; Neupane B; Li P; Su W; Wang G
    Electrophoresis; 2016 Aug; 37(15-16):2129-38. PubMed ID: 27196052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence correlation spectroscopy measures molecular transport in cells.
    Elson EL
    Traffic; 2001 Nov; 2(11):789-96. PubMed ID: 11733045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of low concentrations of DNA using single molecule detection and velocity measurement in a microchannel.
    Chao SY; Ho YP; Bailey VJ; Wang TH
    J Fluoresc; 2007 Nov; 17(6):767-74. PubMed ID: 17653837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.