BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 17980047)

  • 21. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae).
    Ross JA; Urton JR; Boland J; Shapiro MD; Peichel CL
    PLoS Genet; 2009 Feb; 5(2):e1000391. PubMed ID: 19229325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow-mediated plasticity in the expression of stickleback nesting glue genes.
    Seear PJ; Head ML; Tilley CA; Rosato E; Barber I
    Ecol Evol; 2014 Apr; 4(8):1233-42. PubMed ID: 24834322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of environmental androgens: a novel method based on enzyme-linked immunosorbent assay of spiggin, the stickleback (Gasterosteus aculeatus) glue protein.
    Katsiadaki I; Scott AP; Hurst MR; Matthiessen P; Mayer I
    Environ Toxicol Chem; 2002 Sep; 21(9):1946-54. PubMed ID: 12206436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback.
    Morris MRJ; Bowles E; Allen BE; Jamniczky HA; Rogers SM
    BMC Evol Biol; 2018 Jul; 18(1):113. PubMed ID: 30021523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new ELISA for the three-spined stickleback (Gasterosteus aculeatus L.) spiggin, using antibodies against synthetic peptide.
    Sanchez W; Goin C; Brion F; Olsson PE; Goksøyr A; Porcher JM
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):129-37. PubMed ID: 17921071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A.
    Howes TR; Summers BR; Kingsley DM
    BMC Biol; 2017 Dec; 15(1):115. PubMed ID: 29212540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromosomal Fusions Facilitate Adaptation to Divergent Environments in Threespine Stickleback.
    Liu Z; Roesti M; Marques D; Hiltbrunner M; Saladin V; Peichel CL
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 34908155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.
    Zhou M; Yan J; Ma Z; Zhou Y; Abbood NN; Liu J; Su L; Jia H; Guo AY
    PLoS One; 2012; 7(7):e40649. PubMed ID: 22808219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates.
    Zhang Z; Liu J; Li M; Yang H; Zhang C
    PLoS One; 2012; 7(11):e49265. PubMed ID: 23166625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic Dissection of a Supergene Implicates
    Erickson PA; Baek J; Hart JC; Cleves PA; Miller CT
    Genetics; 2018 Jun; 209(2):591-605. PubMed ID: 29593029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exposure to the pesticide linuron affects androgen-dependent gene expression in the three-spined stickleback (Gasterosteus aculeatus).
    Hogan NS; Gallant MJ; van den Heuvel MR
    Environ Toxicol Chem; 2012 Jun; 31(6):1391-5. PubMed ID: 22514014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Syst Biol; 2009 Feb; 3():23. PubMed ID: 19232106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extensive copy-number variation of young genes across stickleback populations.
    Chain FJ; Feulner PG; Panchal M; Eizaguirre C; Samonte IE; Kalbe M; Lenz TL; Stoll M; Bornberg-Bauer E; Milinski M; Reusch TB
    PLoS Genet; 2014 Dec; 10(12):e1004830. PubMed ID: 25474574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterisation of a novel immune-type receptor (NITR) gene cluster in the European sea bass, Dicentrarchus labrax, reveals recurrent gene expansion and diversification by positive selection.
    Ferraresso S; Kuhl H; Milan M; Ritchie DW; Secombes CJ; Reinhardt R; Bargelloni L
    Immunogenetics; 2009 Dec; 61(11-12):773-88. PubMed ID: 19851764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-Wide Genotype-Expression Relationships Reveal Both Copy Number and Single Nucleotide Differentiation Contribute to Differential Gene Expression between Stickleback Ecotypes.
    Huang Y; Feulner PGD; Eizaguirre C; Lenz TL; Bornberg-Bauer E; Milinski M; Reusch TBH; Chain FJJ
    Genome Biol Evol; 2019 Aug; 11(8):2344-2359. PubMed ID: 31298693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global identification and comparative analysis of SOCS genes in fish: insights into the molecular evolution of SOCS family.
    Jin HJ; Shao JZ; Xiang LX; Wang H; Sun LL
    Mol Immunol; 2008 Mar; 45(5):1258-68. PubMed ID: 18029016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of the NANOG pseudogene family in the human and chimpanzee genomes.
    Fairbanks DJ; Maughan PJ
    BMC Evol Biol; 2006 Feb; 6():12. PubMed ID: 16469101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus).
    Coyle SM; Huntingford FA; Peichel CL
    J Hered; 2007; 98(6):581-6. PubMed ID: 17693397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback.
    Reusch TB; Schaschl H; Wegner KM
    Immunogenetics; 2004 Sep; 56(6):427-37. PubMed ID: 15322775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A High-Quality Assembly of the Nine-Spined Stickleback (Pungitius pungitius) Genome.
    Varadharajan S; Rastas P; Löytynoja A; Matschiner M; Calboli FCF; Guo B; Nederbragt AJ; Jakobsen KS; Merilä J
    Genome Biol Evol; 2019 Nov; 11(11):3291-3308. PubMed ID: 31687752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.