BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17980580)

  • 1. Phytoremediation of coal mine spoil dump through integrated biotechnological approach.
    Juwarkar AA; Jambhulkar HP
    Bioresour Technol; 2008 Jul; 99(11):4732-41. PubMed ID: 17980580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-restoration approach for mine spoil overburden dump through biotechnological route.
    Jambhulkar HP; Kumar MS
    Environ Monit Assess; 2019 Nov; 191(12):772. PubMed ID: 31773282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management of mine spoil for crop productivity with lignite fly ash and biological amendments.
    Ram LC; Srivastava NK; Tripathi RC; Jha SK; Sinha AK; Singh G; Manoharan V
    J Environ Manage; 2006 Apr; 79(2):173-87. PubMed ID: 16256262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter. A greenhouse study.
    Kumar GP; Yadav SK; Thawale PR; Singh SK; Juwarkar AA
    Bioresour Technol; 2008 Apr; 99(6):2078-82. PubMed ID: 17482809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of fly ash dump through biological interventions.
    Juwarkar AA; Jambhulkar HP
    Environ Monit Assess; 2008 Apr; 139(1-3):355-65. PubMed ID: 17624598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological study of revegetated coal mine spoil of an Indian dry tropical ecosystem along an age gradient.
    Singh RS; Tripathi N; Chaulya SK
    Biodegradation; 2012 Nov; 23(6):837-49. PubMed ID: 22864538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of high-biomass crops on coal mine spoil banks: can microbial inoculation compensate for high doses of organic matter?
    Gryndler M; Sudová R; Püschel D; Rydlová J; Janousková M; Vosátka M
    Bioresour Technol; 2008 Sep; 99(14):6391-9. PubMed ID: 18178433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.
    Jambhulkar HP; Juwarkar AA
    Ecotoxicol Environ Saf; 2009 May; 72(4):1122-8. PubMed ID: 19171381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of wetland plants on weathered acidic mine tailings.
    Stoltz E; Greger M
    Environ Pollut; 2006 Nov; 144(2):689-94. PubMed ID: 16584823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of vegetation and fertilization on weathered particles of coal gob in Shanxi mining areas, China.
    Li S; Wu D; Zhang J
    J Hazard Mater; 2005 Sep; 124(1-3):209-16. PubMed ID: 15979237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An appraisal of the potential use of fly ash for reclaiming coal mine spoil.
    Ram LC; Masto RE
    J Environ Manage; 2010; 91(3):603-17. PubMed ID: 19914766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic waste amendments for restoration of physicochemical and biological productivity of mine spoil dump for sustainable development.
    Raghunathan K; Marathe D; Singh A; Thawale P
    Environ Monit Assess; 2021 Aug; 193(9):599. PubMed ID: 34432167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth.
    Simon L
    Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings.
    Chu Z; Wang X; Wang Y; Liu G; Dong Z; Lu X; Chen G; Zha F
    Environ Monit Assess; 2017 Dec; 190(1):36. PubMed ID: 29270684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential benefits and risks of land application of sewage sludge.
    Singh RP; Agrawal M
    Waste Manag; 2008; 28(2):347-58. PubMed ID: 17320368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge.
    Chiochetta CG; Toumi H; Böhm RFS; Engel F; Poyer-Radetski G; Rörig LR; Adani F; Radetski CM
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24624-24633. PubMed ID: 28913724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reclamation of a mine contaminated soil using biologically reactive organic matrices.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G
    Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: a greenhouse study.
    Green S; Renault S
    Environ Pollut; 2008 Feb; 151(3):524-31. PubMed ID: 17561322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.