BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17980634)

  • 1. Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle.
    Miño-Fariña N; Muñoz-Guzón F; López-Peña M; Ginebra MP; Del Valle-Fresno S; Ayala D; González-Cantalapiedra A
    Vet J; 2009 Feb; 179(2):264-72. PubMed ID: 17980634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of an injectable Macroporous Calcium Phosphate Cement.
    del Valle S; Miño N; Muñoz F; González A; Planell JA; Ginebra MP
    J Mater Sci Mater Med; 2007 Feb; 18(2):353-61. PubMed ID: 17323169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable calcium-phosphate-based composites for skeletal bone treatments.
    Ambrosio L; Guarino V; Sanginario V; Torricelli P; Fini M; Ginebra MP; Planell JA; Giardino R
    Biomed Mater; 2012 Apr; 7(2):024113. PubMed ID: 22456083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and resorption of a brushite calcium phosphate cement.
    Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Drug delivery of CPC/cisplatin complex in vitro and its ability to repair bone defect and eliminate tumor in vivo].
    Liu Y; Liu M; Ren P
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2009 Oct; 34(10):991-7. PubMed ID: 19893250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium phosphate cement: review of mechanical and biological properties.
    Ambard AJ; Mueninghoff L
    J Prosthodont; 2006; 15(5):321-8. PubMed ID: 16958734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone augmentation in rabbit calvariae: comparative study between Bio-Oss and a novel beta-TCP/DCPD granulate.
    Tamimi FM; Torres J; Tresguerres I; Clemente C; López-Cabarcos E; Blanco LJ
    J Clin Periodontol; 2006 Dec; 33(12):922-8. PubMed ID: 17092243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits.
    Tsai CH; Lin RM; Ju CP; Chern Lin JH
    Biomaterials; 2008 Mar; 29(8):984-93. PubMed ID: 18096221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of silica gel on the cohesion, properties and biological performance of brushite cement.
    Alkhraisat MH; Rueda C; Jerez LB; Tamimi Mariño F; Torres J; Gbureck U; Lopez Cabarcos E
    Acta Biomater; 2010 Jan; 6(1):257-65. PubMed ID: 19523541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration.
    Sarkar SK; Lee BY; Padalhin AR; Sarker A; Carpena N; Kim B; Paul K; Choi HJ; Bae SH; Lee BT
    J Biomater Appl; 2016 Jan; 30(6):823-37. PubMed ID: 26333790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium-based bone cement and bone void filler: preliminary experimental studies.
    Schendel SA; Peauroi J
    J Craniofac Surg; 2009 Mar; 20(2):461-4. PubMed ID: 19305245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, properties and animal study of a calcium phosphate/calcium sulfate composite cement.
    Chen WL; Chen CK; Lee JW; Lee YL; Ju CP; Lin JH
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():60-7. PubMed ID: 24582223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closing capacity of cranial bone defects using porous calcium phosphate cement implants in a rabbit animal model.
    Kroese-Deutman HC; Wolke JG; Spauwen PH; Jansen JA
    J Biomed Mater Res A; 2006 Dec; 79(3):503-11. PubMed ID: 16788974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic biphasic calcium sulphate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vivo study.
    Vlad MD; Sindilar EV; Mariñoso ML; Poeată I; Torres R; López J; Barracó M; Fernández E
    Acta Biomater; 2010 Feb; 6(2):607-16. PubMed ID: 19607944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes.
    Sanzana ES; Navarro M; Macule F; Suso S; Planell JA; Ginebra MP
    Acta Biomater; 2008 Nov; 4(6):1924-33. PubMed ID: 18539102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria.
    Cavalcanti SC; Pereira CL; Mazzonetto R; de Moraes M; Moreira RW
    J Craniomaxillofac Surg; 2008 Sep; 36(6):354-9. PubMed ID: 18424059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration in experimental animals using calcium phosphate cement combined with platelet growth factors and human growth hormone.
    Emilov-Velev K; Clemente-de-Arriba C; Alobera-García MÁ; Moreno-Sansalvador EM; Campo-Loarte J
    Rev Esp Cir Ortop Traumatol; 2015; 59(3):200-10. PubMed ID: 25440455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.