BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 17981382)

  • 1. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review.
    Lebeau T; Braud A; Jézéquel K
    Environ Pollut; 2008 Jun; 153(3):497-522. PubMed ID: 17981382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation.
    Khan AG
    J Trace Elem Med Biol; 2005; 18(4):355-64. PubMed ID: 16028497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New advances in plant growth-promoting rhizobacteria for bioremediation.
    Zhuang X; Chen J; Shim H; Bai Z
    Environ Int; 2007 Apr; 33(3):406-13. PubMed ID: 17275086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.
    Azcón R; Medina A; Roldán A; Biró B; Vivas A
    Chemosphere; 2009 Apr; 75(3):327-34. PubMed ID: 19185328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress.
    Gamalero E; Lingua G; Berta G; Glick BR
    Can J Microbiol; 2009 May; 55(5):501-14. PubMed ID: 19483778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.
    Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P
    Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P; Visoottiviseth P
    Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea.
    Wu SC; Cheung KC; Luo YM; Wong MH
    Environ Pollut; 2006 Mar; 140(1):124-35. PubMed ID: 16150522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria.
    Braud A; Jézéquel K; Bazot S; Lebeau T
    Chemosphere; 2009 Jan; 74(2):280-6. PubMed ID: 18945474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils.
    Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW
    Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.
    Miransari M
    Biotechnol Adv; 2011; 29(6):645-53. PubMed ID: 21557996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.
    Rajkumar M; Ae N; Freitas H
    Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils.
    Mishra V; Gupta A; Kaur P; Singh S; Singh N; Gehlot P; Singh J
    Int J Phytoremediation; 2016; 18(7):697-703. PubMed ID: 26682583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil.
    Alarcón A; Davies FT; Autenrieth RL; Zuberer DA
    Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arbuscular mycorrhiza and heavy metal tolerance.
    Hildebrandt U; Regvar M; Bothe H
    Phytochemistry; 2007 Jan; 68(1):139-46. PubMed ID: 17078985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil.
    Carrasco L; Azcón R; Kohler J; Roldán A; Caravaca F
    Sci Total Environ; 2011 Feb; 409(6):1205-9. PubMed ID: 21211827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.