These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17981565)

  • 41. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations.
    Aartsma-Rus A; Fokkema I; Verschuuren J; Ginjaar I; van Deutekom J; van Ommen GJ; den Dunnen JT
    Hum Mutat; 2009 Mar; 30(3):293-9. PubMed ID: 19156838
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exon 51 Skipping Quantification by Digital Droplet PCR in del52hDMD/mdx Mice.
    Hiller M; Spitali P; Datson N; Aartsma-Rus A
    Methods Mol Biol; 2018; 1828():249-262. PubMed ID: 30171546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Treatment with antisense oligonucleotides in Duchenne's disease].
    Pascual-Pascual SI
    Rev Neurol; 2012 May; 54 Suppl 3():S31-9. PubMed ID: 22605630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bubble liposomes and ultrasound exposure improve localized morpholino oligomer delivery into the skeletal muscles of dystrophic mdx mice.
    Negishi Y; Ishii Y; Shiono H; Akiyama S; Sekine S; Kojima T; Mayama S; Kikuchi T; Hamano N; Endo-Takahashi Y; Suzuki R; Maruyama K; Aramaki Y
    Mol Pharm; 2014 Mar; 11(3):1053-61. PubMed ID: 24433046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Splicing intervention for Duchenne muscular dystrophy.
    McClorey G; Fletcher S; Wilton S
    Curr Opin Pharmacol; 2005 Oct; 5(5):529-34. PubMed ID: 16085461
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward an oligonucleotide therapy for Duchenne muscular dystrophy: a complex development challenge.
    Wood MJ
    Sci Transl Med; 2010 Mar; 2(25):25ps15. PubMed ID: 20424011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy.
    Béroud C; Tuffery-Giraud S; Matsuo M; Hamroun D; Humbertclaude V; Monnier N; Moizard MP; Voelckel MA; Calemard LM; Boisseau P; Blayau M; Philippe C; Cossée M; Pagès M; Rivier F; Danos O; Garcia L; Claustres M
    Hum Mutat; 2007 Feb; 28(2):196-202. PubMed ID: 17041910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of therapy for Duchenne muscular dystrophy.
    Zhang S; Xie H; Zhou G; Yang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):194-203. PubMed ID: 17357471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy.
    Nakamura A
    J Hum Genet; 2017 Oct; 62(10):871-876. PubMed ID: 28566768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-viral gene therapy for Duchenne muscular dystrophy: progress and challenges.
    Rando TA
    Biochim Biophys Acta; 2007 Feb; 1772(2):263-71. PubMed ID: 17005381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antisense PMO cocktails effectively skip dystrophin exons 45-55 in myotubes transdifferentiated from DMD patient fibroblasts.
    Lee J; Echigoya Y; Duddy W; Saito T; Aoki Y; Takeda S; Yokota T
    PLoS One; 2018; 13(5):e0197084. PubMed ID: 29771942
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rescue of dystrophin mRNA of Duchenne muscular dystrophy by inducing exon skipping.
    Matsuo M; Takeshima Y
    Acta Myol; 2005 Oct; 24(2):110-4. PubMed ID: 16550927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.
    Echigoya Y; Mouly V; Garcia L; Yokota T; Duddy W
    PLoS One; 2015; 10(3):e0120058. PubMed ID: 25816009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene therapy for muscle disease.
    Miyagoe-Suzuki Y; Takeda S
    Exp Cell Res; 2010 Nov; 316(18):3087-92. PubMed ID: 20580709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA-targeted splice-correction therapy for neuromuscular disease.
    Wood MJ; Gait MJ; Yin H
    Brain; 2010 Apr; 133(Pt 4):957-72. PubMed ID: 20150322
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exon-skipping advances for Duchenne muscular dystrophy.
    Echevarría L; Aupy P; Goyenvalle A
    Hum Mol Genet; 2018 Aug; 27(R2):R163-R172. PubMed ID: 29771317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mammalian models of Duchenne Muscular Dystrophy: pathological characteristics and therapeutic applications.
    Nakamura A; Takeda S
    J Biomed Biotechnol; 2011; 2011():184393. PubMed ID: 21274260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Therapeutic restoration of dystrophin expression in Duchenne muscular dystrophy.
    Wells DJ
    J Muscle Res Cell Motil; 2006; 27(5-7):387-98. PubMed ID: 16874449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes.
    Carvalho C; Carmo-Fonseca M
    Methods Mol Biol; 2020; 2161():37-50. PubMed ID: 32681504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.