BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 17981625)

  • 1. Diabetic complications and dysregulated innate immunity.
    Graves DT; Kayal RA
    Front Biosci; 2008 Jan; 13():1227-39. PubMed ID: 17981625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Innate Immune and Inflammatory Responses in the Development of Secondary Diabetic Complications.
    Plowman TJ; Shah MH; Fernandez E; Christensen H; Aiges M; Ramana KV
    Curr Mol Med; 2023; 23(9):901-920. PubMed ID: 36154569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tannins and vascular complications of Diabetes: An update.
    Laddha AP; Kulkarni YA
    Phytomedicine; 2019 Mar; 56():229-245. PubMed ID: 30668344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients.
    Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ
    Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of inflammatory cytokines in diabetes and its complications.
    King GL
    J Periodontol; 2008 Aug; 79(8 Suppl):1527-34. PubMed ID: 18673007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TAGE (toxic AGEs) theory in diabetic complications.
    Sato T; Iwaki M; Shimogaito N; Wu X; Yamagishi S; Takeuchi M
    Curr Mol Med; 2006 May; 6(3):351-8. PubMed ID: 16712480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetic periodontitis: a model for activated innate immunity and impaired resolution of inflammation.
    Nassar H; Kantarci A; van Dyke TE
    Periodontol 2000; 2007; 43():233-44. PubMed ID: 17214841
    [No Abstract]   [Full Text] [Related]  

  • 8. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications.
    Laddha AP; Kulkarni YA
    Eur J Pharmacol; 2020 Aug; 881():173206. PubMed ID: 32442539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of protein kinase C activation and the vascular complications of diabetes.
    Das Evcimen N; King GL
    Pharmacol Res; 2007 Jun; 55(6):498-510. PubMed ID: 17574431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes.
    Yamagishi S; Matsui T; Nakamura K
    Curr Drug Targets; 2007 Oct; 8(10):1138-43. PubMed ID: 17979674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gliclazide alters macrophages polarization state in diabetic atherosclerosis in vitro via blocking AGE-RAGE/TLR4-reactive oxygen species-activated NF-kβ nexus.
    Jahan H; Choudhary MI
    Eur J Pharmacol; 2021 Mar; 894():173874. PubMed ID: 33460615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus.
    Katakami N
    J Atheroscler Thromb; 2018 Jan; 25(1):27-39. PubMed ID: 28966336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications.
    Papachristoforou E; Lambadiari V; Maratou E; Makrilakis K
    J Diabetes Res; 2020; 2020():7489795. PubMed ID: 33123598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications.
    Kang Q; Yang C
    Redox Biol; 2020 Oct; 37():101799. PubMed ID: 33248932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperglycemia and the pathobiology of diabetic complications.
    Aronson D
    Adv Cardiol; 2008; 45():1-16. PubMed ID: 18230953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quercetin inhibited epithelial mesenchymal transition in diabetic rats, high-glucose-cultured lens, and SRA01/04 cells through transforming growth factor-β2/phosphoinositide 3-kinase/Akt pathway.
    Du L; Hao M; Li C; Wu W; Wang W; Ma Z; Yang T; Zhang N; Isaac AT; Zhu X; Sun Y; Lu Q; Yin X
    Mol Cell Endocrinol; 2017 Sep; 452():44-56. PubMed ID: 28501572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Oxidative Stress and Inflammatory Factors in Diabetic Kidney Disease.
    Aghadavod E; Khodadadi S; Baradaran A; Nasri P; Bahmani M; Rafieian-Kopaei M
    Iran J Kidney Dis; 2016 Nov; 10(6):337-343. PubMed ID: 27903991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced glycation end products and diabetic complications.
    Stitt AW; Jenkins AJ; Cooper ME
    Expert Opin Investig Drugs; 2002 Sep; 11(9):1205-23. PubMed ID: 12225243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy.
    Elmarakby AA; Sullivan JC
    Cardiovasc Ther; 2012 Feb; 30(1):49-59. PubMed ID: 20718759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response.
    Liao YR; Li ZJ; Zeng P; Lan YQ
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1136-1142. PubMed ID: 28843858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.