BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17981934)

  • 1. Novel mechanism for conditional aerobic growth of the anaerobic bacterium Treponema denticola.
    Lai Y; Chu L
    Appl Environ Microbiol; 2008 Jan; 74(1):73-9. PubMed ID: 17981934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism.
    Chu L; Lai Y; Xu X; Eddy S; Yang S; Song L; Kolodrubetz D
    J Biol Chem; 2008 Jul; 283(28):19351-8. PubMed ID: 18482986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola.
    Phillips L; Chu L; Kolodrubetz D
    Anaerobe; 2020 Aug; 64():102231. PubMed ID: 32603680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Aggregatibacter actinomycetemcomitans in glutathione catabolism.
    Chu L; Xu X; Su J; Song L; Lai Y; Dong Z; Cappelli D
    Oral Microbiol Immunol; 2009 Jun; 24(3):236-42. PubMed ID: 19416454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic and oxidoreductase activity of Treponema denticola ATCC 35405 grown in an aerobic and anaerobic gaseous environment.
    Syed SA; Mäkinen KK; Mäkinen PL; Chen CY; Muhammad Z
    Res Microbiol; 1993 May; 144(4):317-26. PubMed ID: 8248625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutathione metabolism of Treponema denticola in bacterial growth and virulence expression.
    Chu L; Dong Z; Xu X; Cochran DL; Ebersole JL
    Infect Immun; 2002 Mar; 70(3):1113-20. PubMed ID: 11854190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione catabolism by Treponema denticola impacts its pathogenic potential.
    Chu L; Wu Y; Xu X; Phillips L; Kolodrubetz D
    Anaerobe; 2020 Apr; 62():102170. PubMed ID: 32044394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Treponema denticola PAS Domain-Containing Histidine Kinase Hpk2 Is a Heme Binding Sensor of Oxygen Levels.
    Sarkar J; Miller DP; Oliver LD; Marconi RT
    J Bacteriol; 2018 Sep; 200(18):. PubMed ID: 29986942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen sulfide induces apoptosis in human periodontium cells.
    Zhang JH; Dong Z; Chu L
    J Periodontal Res; 2010 Feb; 45(1):71-8. PubMed ID: 19602114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory maintenance of Treponema denticola.
    Fenno JC
    Curr Protoc Microbiol; 2005 Oct; Chapter 12():Unit 12B.1. PubMed ID: 18770551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel transcriptional regulator OxtR1 regulates potential ferrodoxin in response to oxygen stress in Treponema denticola.
    Numata Y; Kikuchi Y; Sato T; Okamoto-Shibayama K; Ando Y; Miyai-Murai Y; Kokubu E; Ishihara K
    Anaerobe; 2024 Jun; 87():102852. PubMed ID: 38614291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting cystalysin, a virulence factor of treponema denticola-supported periodontitis.
    Spyrakis F; Cellini B; Bruno S; Benedetti P; Carosati E; Cruciani G; Micheli F; Felici A; Cozzini P; Kellogg GE; Voltattorni CB; Mozzarelli A
    ChemMedChem; 2014 Jul; 9(7):1501-11. PubMed ID: 24616267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5'-phosphate-dependent protein acting as a haemolytic enzyme.
    Krupka HI; Huber R; Holt SC; Clausen T
    EMBO J; 2000 Jul; 19(13):3168-78. PubMed ID: 10880431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treponema denticola transcriptional profiles in serum-restricted conditions.
    Tanno-Nakanishi M; Kikuchi Y; Kokubu E; Yamada S; Ishihara K
    FEMS Microbiol Lett; 2018 Aug; 365(16):. PubMed ID: 29982599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene.
    Wang CL; Lum AM; Ozuna SC; Clark DS; Keasling JD
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):425-30. PubMed ID: 11549014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role for recombinant gamma-glutamyltransferase from Treponema denticola in glutathione metabolism.
    Chu L; Xu X; Dong Z; Cappelli D; Ebersole JL
    Infect Immun; 2003 Jan; 71(1):335-42. PubMed ID: 12496183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfhemoglobin formation in human erythrocytes by cystalysin, an L-cysteine desulfhydrase from Treponema denticola.
    Kurzban GP; Chu L; Ebersole JL; Holt SC
    Oral Microbiol Immunol; 1999 Jun; 14(3):153-64. PubMed ID: 10495709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cystalysin, a 46-kDa L-cysteine desulfhydrase from Treponema denticola: biochemical and biophysical characterization.
    Chu L; Ebersole JL; Kurzban GP; Holt SC
    Clin Infect Dis; 1999 Mar; 28(3):442-50. PubMed ID: 10194060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of TroA and TroR in Metalloregulated Growth and Gene Expression in
    Saraithong P; Goetting-Minesky MP; Durbin PM; Olson SW; Gherardini FC; Fenno JC
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced transformation efficiency in Treponema denticola enabled by SyngenicDNA-based plasmids lacking restriction-modification target motifs.
    Johnston CD; Goetting-Minesky MP; Kennedy K; Godovikova V; Zayed SM; Roberts RJ; Fenno JC
    Mol Oral Microbiol; 2023 Dec; 38(6):455-470. PubMed ID: 37880921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.