BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 17981993)

  • 1. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells.
    Martins M; Henriques M; Azeredo J; Rocha SM; Coimbra MA; Oliveira R
    Eukaryot Cell; 2007 Dec; 6(12):2429-36. PubMed ID: 17981993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candida species extracellular alcohols: production and effect in sessile cells.
    Martins M; Henriques M; Azeredo J; Rocha SM; Coimbra MA; Oliveira R
    J Basic Microbiol; 2010 Dec; 50 Suppl 1():S89-97. PubMed ID: 20473968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.
    Alem MA; Oteef MD; Flowers TH; Douglas LJ
    Eukaryot Cell; 2006 Oct; 5(10):1770-9. PubMed ID: 16980403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.
    Chauhan NM; Shinde RB; Karuppayil SM
    Braz J Microbiol; 2013 Dec; 44(4):1315-20. PubMed ID: 24688528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis.
    Staib P; Morschhäuser J
    Mol Microbiol; 2005 Jan; 55(2):637-52. PubMed ID: 15659176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.
    Pujol C; Daniels KJ; Soll DR
    Eukaryot Cell; 2015 Dec; 14(12):1186-202. PubMed ID: 26432632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy.
    Costa AC; de Campos Rasteiro VM; Pereira CA; da Silva Hashimoto ES; Beltrame M; Junqueira JC; Jorge AO
    Arch Oral Biol; 2011 Nov; 56(11):1299-305. PubMed ID: 21704304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in biofilm formation among blood and oral isolates of Candida albicans and Candida dubliniensis.
    Villar-Vidal M; Marcos-Arias C; Eraso E; Quindós G
    Enferm Infecc Microbiol Clin; 2011 Nov; 29(9):660-5. PubMed ID: 21899928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis.
    Thibane VS; Kock JL; Ells R; van Wyk PW; Pohl CH
    Mar Drugs; 2010 Oct; 8(10):2597-604. PubMed ID: 21116408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydospore formation in Candida albicans and Candida dubliniensis--an enigmatic developmental programme.
    Staib P; Morschhäuser J
    Mycoses; 2007 Jan; 50(1):1-12. PubMed ID: 17302741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics for the analysis of the Candida albicans biofilm lifestyle.
    Thomas DP; Bachmann SP; Lopez-Ribot JL
    Proteomics; 2006 Nov; 6(21):5795-804. PubMed ID: 17001605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic profile of Candida albicans and Candida parapsilosis interactions within dual-species biofilms.
    Franco-Duarte R; Seabra CL; Rocha SM; Henriques M; Sampaio P; Teixeira JA; Botelho CM
    FEMS Microbiol Ecol; 2022 Apr; 98(4):. PubMed ID: 35298615
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Yılmaz Öztürk B; Yenice Gürsu B; Dağ İ
    Biofouling; 2022 Apr; 38(4):355-366. PubMed ID: 35546788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A morphogenetic regulatory role for ethyl alcohol in Candida albicans.
    Chauhan NM; Raut JS; Karuppayil SM
    Mycoses; 2011 Nov; 54(6):e697-703. PubMed ID: 21605190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.
    Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H
    Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydosporulation of Candida albicans and Candida dubliniensis on mustard agar.
    Girish Kumar CP; Menon T; Prabu D; Nandhakumar B
    Mycoses; 2007 Jan; 50(1):71-3. PubMed ID: 17302752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity.
    Wongsuk T; Pumeesat P; Luplertlop N
    J Basic Microbiol; 2016 May; 56(5):440-7. PubMed ID: 26972663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal activity of tyrosol and farnesol used in combination against Candida species in the planktonic state or forming biofilms.
    Monteiro DR; Arias LS; Fernandes RA; Deszo da Silva LF; de Castilho MOVF; da Rosa TO; Vieira APM; Straioto FG; Barbosa DB; Delbem ACB
    J Appl Microbiol; 2017 Aug; 123(2):392-400. PubMed ID: 28622460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of tyrosol and farnesol on Candida albicans biofilm.
    Sebaa S; Boucherit-Otmani Z; Courtois P
    Mol Med Rep; 2019 Apr; 19(4):3201-3209. PubMed ID: 30816484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.
    James KM; MacDonald KW; Chanyi RM; Cadieux PA; Burton JP
    J Med Microbiol; 2016 Apr; 65(4):328-336. PubMed ID: 26847045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.