BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17982451)

  • 1. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet.
    Xiao T; Baier H
    Nat Neurosci; 2007 Dec; 10(12):1529-37. PubMed ID: 17982451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retina development in zebrafish requires the heparan sulfate proteoglycan agrin.
    Liu IH; Zhang C; Kim MJ; Cole GJ
    Dev Neurobiol; 2008 Jun; 68(7):877-98. PubMed ID: 18327763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer).
    Lee JS; von der Hardt S; Rusch MA; Stringer SE; Stickney HL; Talbot WS; Geisler R; Nüsslein-Volhard C; Selleck SB; Chien CB; Roehl H
    Neuron; 2004 Dec; 44(6):947-60. PubMed ID: 15603738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection.
    Xiao T; Roeser T; Staub W; Baier H
    Development; 2005 Jul; 132(13):2955-67. PubMed ID: 15930106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type IV Collagen Controls the Axogenesis of Cerebellar Granule Cells by Regulating Basement Membrane Integrity in Zebrafish.
    Takeuchi M; Yamaguchi S; Yonemura S; Kakiguchi K; Sato Y; Higashiyama T; Shimizu T; Hibi M
    PLoS Genet; 2015 Oct; 11(10):e1005587. PubMed ID: 26451951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of lamina-specific neuronal connections by slit bound to type IV collagen.
    Xiao T; Staub W; Robles E; Gosse NJ; Cole GJ; Baier H
    Cell; 2011 Jul; 146(1):164-76. PubMed ID: 21729787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EphrinB2a in the zebrafish retinotectal system.
    Wagle M; Grunewald B; Subburaju S; Barzaghi C; Le Guyader S; Chan J; Jesuthasan S
    J Neurobiol; 2004 Apr; 59(1):57-65. PubMed ID: 15007827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum.
    Robles E; Filosa A; Baier H
    J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish mutations affecting retinotectal axon pathfinding.
    Karlstrom RO; Trowe T; Klostermann S; Baier H; Brand M; Crawford AD; Grunewald B; Haffter P; Hoffmann H; Meyer SU; Müller BK; Richter S; van Eeden FJ; Nüsslein-Volhard C; Bonhoeffer F
    Development; 1996 Dec; 123():427-38. PubMed ID: 9007260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos.
    Martinek N; Shahab J; Saathoff M; Ringuette M
    J Cell Sci; 2008 May; 121(Pt 10):1671-80. PubMed ID: 18445681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development.
    Norton WH; Ledin J; Grandel H; Neumann CJ
    Development; 2005 Nov; 132(22):4963-73. PubMed ID: 16221725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
    Niell CM; Smith SJ
    Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laminin alpha5 is essential for the formation of the zebrafish fins.
    Webb AE; Sanderford J; Frank D; Talbot WS; Driever W; Kimelman D
    Dev Biol; 2007 Nov; 311(2):369-82. PubMed ID: 17919534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarity and laminar formation of the optic tectum in relation to retinal projection.
    Nakamura H; Sugiyama S
    J Neurobiol; 2004 Apr; 59(1):48-56. PubMed ID: 15007826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of activity on axon pathfinding in the optic tectum.
    Kita EM; Scott EK; Goodhill GJ
    Dev Neurobiol; 2015 Jun; 75(6):608-20. PubMed ID: 25556913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraretinal RGMa is involved in retino-tectal mapping.
    Tassew NG; Chestopolava L; Beecroft R; Matsunaga E; Teng H; Chedotal A; Monnier PP
    Mol Cell Neurosci; 2008 Apr; 37(4):761-9. PubMed ID: 18280178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade.
    Kaethner RJ; Stuermer CA
    J Neurobiol; 1994 Jul; 25(7):781-96. PubMed ID: 8089656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum.
    Gabriel JP; Trivedi CA; Maurer CM; Ryu S; Bollmann JH
    Neuron; 2012 Dec; 76(6):1147-60. PubMed ID: 23259950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in retinal arbors in compressed projections to half tecta in goldfish.
    Schmidt J; Coen T
    J Neurobiol; 1995 Dec; 28(4):409-18. PubMed ID: 8592102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. It's all in the assay: a new model for retinotectal topographic mapping.
    Godement P; Mason C
    Neuron; 2004 Jun; 42(5):697-9. PubMed ID: 15182709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.