BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 1798277)

  • 21. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone.
    Yang L; Yang JB; Chen J; Yu GY; Zhou P; Lei L; Wang ZZ; Cy Chang C; Yang XY; Chang TY; Li BL
    Cell Res; 2004 Aug; 14(4):315-23. PubMed ID: 15353128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of ceroid accumulation in macrophages in vitro.
    Carpenter KL; Ball RY; Carter NP; Woods SE; Hartley SL; Davies S; Enright JH; Mitchinson MJ
    Adv Exp Med Biol; 1989; 266():333-43. PubMed ID: 2486161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of LDL: role in atherogenesis.
    Hoff HF; O'Neil JA
    Klin Wochenschr; 1991 Dec; 69(21-23):1032-8. PubMed ID: 1798276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macrophages, lipid oxidation, ceroid accumulation and alpha-tocopherol depletion in human atherosclerotic lesions.
    Carpenter KL; van der Veen C; Taylor SE; Hardwick SJ; Clare K; Hegyi L; Mitchinson MJ
    Gerontology; 1995; 41 Suppl 2():53-67. PubMed ID: 8821321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monocytes/macrophages in atherosclerosis.
    Plenz G; Robenek H
    Eur Cytokine Netw; 1998 Dec; 9(4):701-3. PubMed ID: 9889421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow cytometric measurement of ceroid accumulation in macrophages.
    Hunt JV; Carpenter KL; Bottoms MA; Carter NP; Marchant CE; Mitchinson MJ
    Atherosclerosis; 1993 Jan; 98(2):229-39. PubMed ID: 8457262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Macrophage mediated protein hydroperoxide formation and lipid oxidation in low density lipoprotein are inhibited by the inflammation marker 7,8-dihydroneopterin.
    Firth CA; Crone EM; Flavall EA; Roake JA; Gieseg SP
    Biochim Biophys Acta; 2008 Jun; 1783(6):1095-101. PubMed ID: 18342632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prevention of cholesteryl ester accumulation in P388D1 macrophage-like cells by increased cellular vitamin E depends on species of extracellular cholesterol. Conventional heterologous non-human cell cultures are poor models of human atherosclerotic foam cell formation.
    Asmis R; Llorente VC; Gey KF
    Eur J Biochem; 1995 Oct; 233(1):171-8. PubMed ID: 7588742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis.
    Ismael FO; Proudfoot JM; Brown BE; van Reyk DM; Croft KD; Davies MJ; Hawkins CL
    Arch Biochem Biophys; 2015 May; 573():40-51. PubMed ID: 25795019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity of oxidised low density lipoprotein towards mouse peritoneal macrophages in vitro.
    Reid VC; Mitchinson MJ
    Atherosclerosis; 1993 Jan; 98(1):17-24. PubMed ID: 8457247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of lipoprotein peroxidation in the pathogenesis of atherosclerosis.
    Steinbrecher UP
    Clin Cardiol; 1991 Nov; 14(11):865-7. PubMed ID: 1764821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts.
    Rosenfeld ME; Khoo JC; Miller E; Parthasarathy S; Palinski W; Witztum JL
    J Clin Invest; 1991 Jan; 87(1):90-9. PubMed ID: 1985115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholesteryl ester accumulation in macrophages treated with oxidized low density lipoprotein.
    Ryu BH; Mao FW; Lou P; Gutman RL; Greenspan P
    Biosci Biotechnol Biochem; 1995 Sep; 59(9):1619-22. PubMed ID: 8520107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis.
    Yuan XM; Anders WL; Olsson AG; Brunk UT
    Atherosclerosis; 1996 Jul; 124(1):61-73. PubMed ID: 8800494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages.
    Hazell LJ; Stocker R
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):165-72. PubMed ID: 8439285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porphyromonas gingivalis induces murine macrophage foam cell formation.
    Qi M; Miyakawa H; Kuramitsu HK
    Microb Pathog; 2003 Dec; 35(6):259-67. PubMed ID: 14580389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins.
    Keidar S; Kaplan M; Hoffman A; Aviram M
    Atherosclerosis; 1995 Jun; 115(2):201-15. PubMed ID: 7661879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: A possible explanation as to why the clinical trials of antioxidants might have failed.
    Ahmad F; Leake DS
    Chem Phys Lipids; 2018 Jul; 213():13-24. PubMed ID: 29518380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages.
    Brown BE; Rashid I; van Reyk DM; Davies MJ
    FEBS J; 2007 Mar; 274(6):1530-41. PubMed ID: 17480204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-density lipoprotein and oxidised low-density lipoprotein: their role in the development of atherosclerosis.
    Hamilton CA
    Pharmacol Ther; 1997; 74(1):55-72. PubMed ID: 9336016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.