BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17983251)

  • 21. Fluorescence Resonance Energy Transfer-Based Photonic Circuits Using Single-Stranded Tile Self-Assembly and DNA Strand Displacement.
    Zhang X; Ying N; Shen C; Cui G
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1053-060. PubMed ID: 29672010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of various sequence-specific triplexes by electron and atomic force microscopies.
    Cherny DI; Fourcade A; Svinarchuk F; Nielsen PE; Malvy C; Delain E
    Biophys J; 1998 Feb; 74(2 Pt 1):1015-23. PubMed ID: 9533714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual recognition of double-stranded DNA by 2'-aminoethoxy-modified oligonucleotides: the solution structure of an intramolecular triplex obtained by NMR spectroscopy.
    Blommers MJ; Natt F; Jahnke W; Cuenoud B
    Biochemistry; 1998 Dec; 37(51):17714-25. PubMed ID: 9922137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence-specific recognition of DNA nanostructures.
    Rusling DA; Fox KR
    Methods; 2014 May; 67(2):123-33. PubMed ID: 24583116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protocols for self-assembly and imaging of DNA nanostructures.
    Sobey TL; Simmel FC
    Methods Mol Biol; 2011; 749():13-32. PubMed ID: 21674362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme-Free Ligation of 5'-Phosphorylated Oligodeoxynucleotides in a DNA Nanostructure.
    Kramer M; Richert C
    Chem Biodivers; 2017 Sep; 14(9):. PubMed ID: 28710838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bulge defects in intramolecular pyrimidine.purine.pyrimidine DNA triplexes in solution.
    Wang Y; Patel DJ
    Biochemistry; 1995 Apr; 34(16):5696-704. PubMed ID: 7727429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triplex DNA Nanostructures: From Basic Properties to Applications.
    Hu Y; Cecconello A; Idili A; Ricci F; Willner I
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15210-15233. PubMed ID: 28444822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmed pH-Driven Reversible Association and Dissociation of Interconnected Circular DNA Dimer Nanostructures.
    Hu Y; Ren J; Lu CH; Willner I
    Nano Lett; 2016 Jul; 16(7):4590-4. PubMed ID: 27225955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA triple-helix specific intercalators as antigene enhancers: unfused aromatic cations.
    Wilson WD; Tanious FA; Mizan S; Yao S; Kiselyov AS; Zon G; Strekowski L
    Biochemistry; 1993 Oct; 32(40):10614-21. PubMed ID: 8399206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures.
    Idili A; Ricci F
    Methods Mol Biol; 2018; 1811():79-100. PubMed ID: 29926447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary binding sites for triplex-forming oligonucleotides containing bulges, loops, and mismatches in the third strand.
    Fox KR; Flashman E; Gowers D
    Biochemistry; 2000 Jun; 39(22):6714-25. PubMed ID: 10828990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer.
    Clegg RM; Murchie AI; Zechel A; Lilley DM
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2994-8. PubMed ID: 8464916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative.
    Lacoste J; François JC; Hélène C
    Nucleic Acids Res; 1997 May; 25(10):1991-8. PubMed ID: 9115367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recognition of triplex forming oligodeoxynucleotides incorporating abasic sites by 5-arylcytosine residues in duplex DNAs.
    Mizuta M; Banba J; Kanamori T; Ohkubo A; Sekine M; Seio K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):25-6. PubMed ID: 18029568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protection of DNA sequences by triplex-bridge formation.
    Kiyama R; Oishi M
    Nucleic Acids Res; 1995 Feb; 23(3):452-8. PubMed ID: 7885840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution conformation of a parallel DNA triple helix with 5' and 3' triplex-duplex junctions.
    Asensio JL; Brown T; Lane AN
    Structure; 1999 Jan; 7(1):1-11. PubMed ID: 10368268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.