These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 17983264)
1. Detecting coevolution in and among protein domains. Yeang CH; Haussler D PLoS Comput Biol; 2007 Nov; 3(11):e211. PubMed ID: 17983264 [TBL] [Abstract][Full Text] [Related]
3. Relating destabilizing regions to known functional sites in proteins. Dessailly BH; Lensink MF; Wodak SJ BMC Bioinformatics; 2007 Apr; 8():141. PubMed ID: 17470296 [TBL] [Abstract][Full Text] [Related]
4. A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. Fares MA; Travers SA Genetics; 2006 May; 173(1):9-23. PubMed ID: 16547113 [TBL] [Abstract][Full Text] [Related]
5. Prediction of protein interdomain linker regions by a hidden Markov model. Bae K; Mallick BK; Elsik CG Bioinformatics; 2005 May; 21(10):2264-70. PubMed ID: 15746283 [TBL] [Abstract][Full Text] [Related]
6. Sequence coevolution between RNA and protein characterized by mutual information between residue triplets. Brandman R; Brandman Y; Pande VS PLoS One; 2012; 7(1):e30022. PubMed ID: 22279560 [TBL] [Abstract][Full Text] [Related]
10. Reducing the false positive rate in the non-parametric analysis of molecular coevolution. Codoñer FM; O'Dea S; Fares MA BMC Evol Biol; 2008 Apr; 8():106. PubMed ID: 18402697 [TBL] [Abstract][Full Text] [Related]
11. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution. Little DY; Chen L PLoS One; 2009; 4(3):e4762. PubMed ID: 19274093 [TBL] [Abstract][Full Text] [Related]
12. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Gloor GB; Martin LC; Wahl LM; Dunn SD Biochemistry; 2005 May; 44(19):7156-65. PubMed ID: 15882054 [TBL] [Abstract][Full Text] [Related]
13. Representation and modeling of protein surface determinants. Pattini L; Merelli I; Cerutti S; Milanesi L IEEE Trans Nanobioscience; 2005 Dec; 4(4):301-5. PubMed ID: 16433296 [TBL] [Abstract][Full Text] [Related]
14. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
15. A topological algorithm for identification of structural domains of proteins. Emmert-Streib F; Mushegian A BMC Bioinformatics; 2007 Jul; 8():237. PubMed ID: 17608939 [TBL] [Abstract][Full Text] [Related]
16. Accurate simulation and detection of coevolution signals in multiple sequence alignments. Ackerman SH; Tillier ER; Gatti DL PLoS One; 2012; 7(10):e47108. PubMed ID: 23091608 [TBL] [Abstract][Full Text] [Related]
17. VISTAL--a new 2D visualization tool of protein 3D structural alignments. Kolodny R; Honig B Bioinformatics; 2006 Sep; 22(17):2166-7. PubMed ID: 16837525 [TBL] [Abstract][Full Text] [Related]
18. A new ensemble coevolution system for detecting HIV-1 protein coevolution. Li G; Theys K; Verheyen J; Pineda-Peña AC; Khouri R; Piampongsant S; Eusébio M; Ramon J; Vandamme AM Biol Direct; 2015 Jan; 10():1. PubMed ID: 25564011 [TBL] [Abstract][Full Text] [Related]
19. Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Tillier ER; Lui TW Bioinformatics; 2003 Apr; 19(6):750-5. PubMed ID: 12691987 [TBL] [Abstract][Full Text] [Related]
20. Integrating protein structures and precomputed genealogies in the Magnum database: examples with cellular retinoid binding proteins. Bradley ME; Benner SA BMC Bioinformatics; 2006 Feb; 7():89. PubMed ID: 16504077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]