These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 1798327)

  • 1. Interaction energy studies on antibiotics nucleoside analogs 2-azaadenine.
    Sanyal NK; Ojha RP; Roychoudhury M
    J Theor Biol; 1991 Jun; 150(3):277-86. PubMed ID: 1798327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New parameterization of the Cornell et al. empirical force field covering amino group nonplanarity in nucleic acid bases.
    Ryjácek F; Kubar T; Hobza P
    J Comput Chem; 2003 Nov; 24(15):1891-901. PubMed ID: 14515371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD(T) levels.
    Rejnek J; Hobza P
    J Phys Chem B; 2007 Jan; 111(3):641-5. PubMed ID: 17228922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of intercalators: a theoretical study.
    Ojha RP; Roychoudhury M; Sanyal NK
    Indian J Biochem Biophys; 1990 Aug; 27(4):228-39. PubMed ID: 2286388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained model of nucleic acid bases.
    Maciejczyk M; Spasic A; Liwo A; Scheraga HA
    J Comput Chem; 2010 Jun; 31(8):1644-55. PubMed ID: 20020472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarizable model potential function for nucleic acid bases.
    Nakagawa S
    J Comput Chem; 2007 Jul; 28(9):1538-1550. PubMed ID: 17342710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanurate mimics of hydrogen-bonding patterns of nucleic bases: crystal structure of a 1:1 molecular complex of 9-ethyladenine and N-methylcyanuric acid.
    Pedireddi VR; Ranganathan A; Ganesh KN
    Org Lett; 2001 Jan; 3(1):99-102. PubMed ID: 11429883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies.
    Sponer J; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 1996 Aug; 14(1):117-35. PubMed ID: 8877568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The small planarization barriers for the amino group in the nucleic acid bases.
    Wang S; Schaefer HF
    J Chem Phys; 2006 Jan; 124(4):044303. PubMed ID: 16460158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-state conical intersections in nucleic acid bases.
    Matsika S
    J Phys Chem A; 2005 Aug; 109(33):7538-45. PubMed ID: 16834123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of the influence of solvent on nucleic acid base associations.
    Pohorille A; Burt SK; MacElroy RD
    J Am Chem Soc; 1984; 106(2):402-9. PubMed ID: 11541957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration and stability of nucleic acid bases and base pairs.
    Kabelác M; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(8):903-17. PubMed ID: 17301881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Interactions between nucleic acid bases. New parameters of potential functions and energy minima].
    Poltev VI; Deriabina AS; Gonzalez E; Grokhlina TI
    Biofizika; 2002; 47(6):996-1004. PubMed ID: 12500562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic acid base-pairing and N-methylacetamide self-association in chloroform: affinity and conformation.
    Luo R; Head MS; Given JA; Gilson MK
    Biophys Chem; 1999 Apr; 78(1-2):183-93. PubMed ID: 10343387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature and magnitude of aromatic stacking of nucleic acid bases.
    Sponer J; Riley KE; Hobza P
    Phys Chem Chem Phys; 2008 May; 10(19):2595-610. PubMed ID: 18464974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio calculations of dispersion coefficients for nucleic acid base pairs.
    Haley TP; Graybill ER; Cybulski SM
    J Chem Phys; 2006 May; 124(20):204301. PubMed ID: 16774326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations.
    Sponer J; Berger I; Spačková N; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():1-24. PubMed ID: 22607400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intriguing relations of interaction energy components in stacked nucleic acids.
    Langner KM; Sokalski WA; Leszczynski J
    J Chem Phys; 2007 Sep; 127(11):111102. PubMed ID: 17887817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-mechanical analysis of the energetic contributions to π stacking in nucleic acids versus rise, twist, and slide.
    Parker TM; Hohenstein EG; Parrish RM; Hud NV; Sherrill CD
    J Am Chem Soc; 2013 Jan; 135(4):1306-16. PubMed ID: 23265256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.