BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 1798377)

  • 21. Effects of two successive maximal exercise tests on pulmonary gas exchange in athletes.
    Caillaud CF; Anselme FM; Prefaut CG
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):141-7. PubMed ID: 8891512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The alveolar to arterial oxygen partial pressure difference is associated with pulmonary diffusing capacity in heart failure patients.
    Morosin M; Vignati C; Novi A; Salvioni E; Veglia F; Alimento M; Merli G; Sciomer S; Sinagra G; Agostoni P
    Respir Physiol Neurobiol; 2016 Nov; 233():1-6. PubMed ID: 27374970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of pulmonary capillary transit times in recruited networks.
    Capen RL; Hanson WL; Latham LP; Dawson CA; Wagner WW
    J Appl Physiol (1985); 1990 Aug; 69(2):473-8. PubMed ID: 2228856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pulmonary function after exercise with special emphasis on diffusion capacity.
    Hanel B
    Dan Med Bull; 2000 Jun; 47(3):196-217. PubMed ID: 10913985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of sustained heavy exercise on the development of pulmonary edema in trained male cyclists.
    McKenzie DC; O'Hare TJ; Mayo J
    Respir Physiol Neurobiol; 2005 Feb; 145(2-3):209-18. PubMed ID: 15705536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exercise-induced oxyhaemoglobin desaturation, ventilatory limitation and lung diffusing capacity in women during and after exercise.
    Walls J; Maskrey M; Wood-Baker R; Stedman W
    Eur J Appl Physiol; 2002 Jun; 87(2):145-52. PubMed ID: 12070625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise.
    Tedjasaputra V; van Diepen S; Collins SÉ; Michaelchuk WM; Stickland MK
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise-induced hypoxemia in heart transplant recipients.
    Braith RW; Limacher MC; Mills RM; Leggett SH; Pollock ML; Staples ED
    J Am Coll Cardiol; 1993 Sep; 22(3):768-76. PubMed ID: 8354811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exercise-induced hypoxaemia in highly trained cyclists at 40% peak oxygen uptake.
    Rice AJ; Scroop GC; Gore CJ; Thornton AT; Chapman MA; Greville HW; Holmes MD; Scicchitano R
    Eur J Appl Physiol Occup Physiol; 1999 Mar; 79(4):353-9. PubMed ID: 10090636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decreased lung capillary blood volume post-exercise is compensated by increased membrane diffusing capacity.
    Johns DP; Berry D; Maskrey M; Wood-Baker R; Reid DW; Walters EH; Walls J
    Eur J Appl Physiol; 2004 Oct; 93(1-2):96-101. PubMed ID: 15278353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute hypervolaemia improves arterial oxygen pressure in athletes with exercise-induced hypoxaemia.
    Zavorsky GS; Walley KR; Hunte GS; McKenzie DC; Sexsmith GP; Russell JA
    Exp Physiol; 2003 Jul; 88(4):555-64. PubMed ID: 12861344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Endurance Training Intensity on Pulmonary Diffusing Capacity at Rest and after Maximal Aerobic Exercise in Young Athletes.
    Dridi R; Dridi N; Govindasamy K; Gmada N; Aouadi R; Guénard H; Laher I; Saeidi A; Suzuki K; Hackney AC; Zouhal H
    Int J Environ Res Public Health; 2021 Nov; 18(23):. PubMed ID: 34886081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Change of pulmonary diffusing capacity, membrane diffusing capacity and pulmonary capillary blood volume in patients with COPD and connective tissue disease at rest and post-exercise].
    Chi L; Liu Y; Piao Z
    Zhonghua Jie He He Hu Xi Za Zhi; 1998 Jun; 21(6):344-7. PubMed ID: 11326890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of dopamine on pulmonary diffusing capacity and capillary blood volume responses to exercise in young healthy humans.
    Michaelchuk WW; Tedjasaputra V; Bryan TL; van Diepen S; Stickland MK
    Exp Physiol; 2019 Dec; 104(12):1952-1962. PubMed ID: 31603268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extent of expiratory flow limitation influences the increase in maximal exercise ventilation in hypoxia.
    Chapman RF; Emery M; Stager JM
    Respir Physiol; 1998 Jul; 113(1):65-74. PubMed ID: 9776552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gas exchange: large surface and thin barrier determine pulmonary diffusing capacity.
    Weibel ER
    Minerva Anestesiol; 1999 Jun; 65(6):377-82. PubMed ID: 10394805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of blood flow on capillary transit time and oxygenation in excised rabbit lung.
    Ayappa I; Brown LV; Wang PM; Katzman N; Houtz P; Bruce EN; Lai-Fook SJ
    Respir Physiol; 1996 Sep; 105(3):203-16. PubMed ID: 8931180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery.
    Boushel R; Ara I; Gnaiger E; Helge JW; González-Alonso J; Munck-Andersen T; Sondergaard H; Damsgaard R; van Hall G; Saltin B; Calbet JA
    Acta Physiol (Oxf); 2014 May; 211(1):122-34. PubMed ID: 24528535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for an inadequate hyperventilation inducing arterial hypoxemia at submaximal exercise in all highly trained endurance athletes.
    Durand F; Mucci P; Préfaut C
    Med Sci Sports Exerc; 2000 May; 32(5):926-32. PubMed ID: 10795782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced arterial O2 saturation during supine exercise in highly trained cyclists.
    Pedersen PK; Mandøe H; Jensen K; Andersen C; Madsen K
    Acta Physiol Scand; 1996 Dec; 158(4):325-31. PubMed ID: 8971253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.