BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 17983816)

  • 1. Thinking outside the cell: the role of extracellular adenosine triphosphate in bile formation.
    Feranchak AP; Fitz JG
    Gastroenterology; 2007 Nov; 133(5):1726-8. PubMed ID: 17983816
    [No Abstract]   [Full Text] [Related]  

  • 2. Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion.
    Fiorotto R; Spirlì C; Fabris L; Cadamuro M; Okolicsanyi L; Strazzabosco M
    Gastroenterology; 2007 Nov; 133(5):1603-13. PubMed ID: 17983806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile.
    Minagawa N; Nagata J; Shibao K; Masyuk AI; Gomes DA; Rodrigues MA; Lesage G; Akiba Y; Kaunitz JD; Ehrlich BE; Larusso NF; Nathanson MH
    Gastroenterology; 2007 Nov; 133(5):1592-602. PubMed ID: 17916355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rules of conduct for the cystic fibrosis anion channel.
    Wine JJ
    Nat Med; 2003 Jul; 9(7):827-8. PubMed ID: 12835696
    [No Abstract]   [Full Text] [Related]  

  • 5. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion.
    Gradilone SA; Masyuk AI; Splinter PL; Banales JM; Huang BQ; Tietz PS; Masyuk TV; Larusso NF
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):19138-43. PubMed ID: 18024594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into cholangiocyte physiology.
    Strazzabosco M
    J Hepatol; 1997 Nov; 27(5):945-52. PubMed ID: 9382988
    [No Abstract]   [Full Text] [Related]  

  • 7. Adenosine and P2 receptors in PC12 cells. Genotypic, phenotypic and individual differences.
    Arslan G; Fredholm BB
    Prog Brain Res; 1999; 120():301-10. PubMed ID: 10551006
    [No Abstract]   [Full Text] [Related]  

  • 8. Matrix proteins of basement membrane of intrahepatic bile ducts are degraded in congenital hepatic fibrosis and Caroli's disease.
    Yasoshima M; Sato Y; Furubo S; Kizawa K; Sanzen T; Ozaki S; Harada K; Nakanuma Y
    J Pathol; 2009 Feb; 217(3):442-51. PubMed ID: 19025978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Prolactin receptors in bile duct cells during rat ontogenesis].
    Petrashchuk OM; Smirnov AN; Smirnova OV
    Biull Eksp Biol Med; 1996 Dec; 122(12):669-72. PubMed ID: 9280470
    [No Abstract]   [Full Text] [Related]  

  • 10. Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding.
    Zhang L; Aleksandrov LA; Zhao Z; Birtley JR; Riordan JR; Ford RC
    J Struct Biol; 2009 Sep; 167(3):242-51. PubMed ID: 19524678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine receptors, cystic fibrosis, and airway hydration.
    Com G; Clancy JP
    Handb Exp Pharmacol; 2009; (193):363-81. PubMed ID: 19639288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.
    Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE
    Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S; Li C; Ramjeesingh M; Bear CE
    Biochem J; 2009 Feb; 418(1):185-90. PubMed ID: 18945216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of cystic fibrosis transmembrane conductance regulator in ganglion cells of the hearts.
    Pan P; Guo Y; Gu J
    Neurosci Lett; 2008 Aug; 441(1):35-8. PubMed ID: 18584958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK; Ju M; Sheppard DN
    Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hedgehog signalling in bile ductular cells.
    Hines IN; Rippe RA
    Gut; 2008 Sep; 57(9):1198-9. PubMed ID: 18719134
    [No Abstract]   [Full Text] [Related]  

  • 17. Purinergic receptor signaling regulates N-cadherin expression in primary astrocyte cultures.
    Tran MD; Wanner IB; Neary JT
    J Neurochem; 2008 Apr; 105(1):272-86. PubMed ID: 18182057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockout mouse models for intestinal electrolyte transporters and regulatory PDZ adaptors: new insights into cystic fibrosis, secretory diarrhoea and fructose-induced hypertension.
    Seidler U; Singh A; Chen M; Cinar A; Bachmann O; Zheng W; Wang J; Yeruva S; Riederer B
    Exp Physiol; 2009 Feb; 94(2):175-9. PubMed ID: 18931049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors.
    TudurĂ­ E; Filiputti E; Carneiro EM; Quesada I
    Am J Physiol Endocrinol Metab; 2008 May; 294(5):E952-60. PubMed ID: 18349114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective formation of PKA/CnA-dependent annexin 2-S100A10/CFTR complex in DeltaF508 cystic fibrosis cells.
    Borthwick LA; Riemen C; Goddard C; Colledge WH; Mehta A; Gerke V; Muimo R
    Cell Signal; 2008 Jun; 20(6):1073-83. PubMed ID: 18346874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.