These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17984058)

  • 1. Arousal of cerebral cortex electroencephalogram consequent to high-frequency stimulation of ventral medullary reticular formation.
    Wu HB; Stavarache M; Pfaff DW; Kow LM
    Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18292-6. PubMed ID: 17984058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel medullary area.
    Golanov EV; Reis DJ
    Brain Res; 2001 Feb; 892(1):1-12. PubMed ID: 11172744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmical jaw movements and lateral ponto-medullary reticular neurons in rats.
    Moriyama Y
    Comp Biochem Physiol A Comp Physiol; 1987; 86(1):7-14. PubMed ID: 2881658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tonic desynchronisation of cortical electroencephalogram by electrical and chemical stimulation of superior colliculus and surrounding structures in urethane-anaesthetised rats.
    Redgrave P; Dean P
    Neuroscience; 1985 Nov; 16(3):659-71. PubMed ID: 2869444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The medullary cerebrovascular vasodilator area mediates cerebrovascular vasodilation and electroencephalogram synchronization elicited from cerebellar fastigial nucleus in Sprague-Dawley rats.
    Golanov EV; Christensen JR; Reis DJ
    Neurosci Lett; 2000 Jul; 288(3):183-6. PubMed ID: 10889338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothalamic effects on medullary reticular activation of deep back muscle EMG.
    Pfaff DW; Korotzer A; Schwartz-Giblin S; Cottingham SL
    Physiol Behav; 1990 Jan; 47(1):185-96. PubMed ID: 2326335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal sensory responses of nucleus reticularis gigantocellularis and the responses' relation to cortical and motor activation.
    Martin EM; Pavlides C; Pfaff D
    J Neurophysiol; 2010 May; 103(5):2326-38. PubMed ID: 20181730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global cerebral vasodilatation elicited by focal electrical stimulation within the dorsal medullary reticular formation in anesthetized rat.
    Iadecola C; Nakai M; Arbit E; Reis DJ
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):270-9. PubMed ID: 6874736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trigeminal premotor neurons in the bulbar parvocellular reticular formation participating in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex in the guinea pig.
    Nozaki S; Iriki A; Nakamura Y
    J Neurophysiol; 1993 Feb; 69(2):595-608. PubMed ID: 8459288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estradiol-associated variation in responses of rostral medullary neurons to somatovisceral stimulation.
    Hubscher CH
    Exp Neurol; 2006 Jul; 200(1):227-39. PubMed ID: 16624305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation.
    Orth M; Bravo E; Barter L; Carstens E; Antognini JF
    Anesth Analg; 2006 Jun; 102(6):1709-14. PubMed ID: 16717314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brainstem area mediating cerebrovascular and EEG responses to hypoxic excitation of rostral ventrolateral medulla in rat.
    Golanov EV; Ruggiero DA; Reis DJ
    J Physiol; 2000 Dec; 529 Pt 2(Pt 2):413-29. PubMed ID: 11101651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brainstem afferents to the rostral (juxtafacial) nucleus paragigantocellularis: integration of exteroceptive and interoceptive sensory inputs in the ventral tegmentum.
    Van Bockstaele EJ; Akaoka H; Aston-Jones G
    Brain Res; 1993 Feb; 603(1):1-18. PubMed ID: 7680934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global increase in cerebral metabolism and blood flow produced by focal electrical stimulation of dorsal medullary reticular formation in rat.
    Iadecola C; Nakai M; Mraovitch S; Ruggiero DA; Tucker LW; Reis DJ
    Brain Res; 1983 Aug; 272(1):101-14. PubMed ID: 6616188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reticular formation influence on neuronal transmission from perforant pathway through dentate gyrus.
    Winson J
    Brain Res; 1981 Nov; 225(1):37-49. PubMed ID: 6271341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical acetylcholine release and electroencephalographic arousal.
    Szerb JC
    J Physiol; 1967 Sep; 192(2):329-43. PubMed ID: 6050151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasodilation evoked from medulla and cerebellum is coupled to bursts of cortical EEG activity in rats.
    Golanov EV; Reis DJ
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R454-67. PubMed ID: 7864241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.
    Marino J; Canedo A; Aguilar J
    Neuroscience; 2000; 95(3):657-73. PubMed ID: 10670434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological identification of spinally projecting neurons in the lateral reticular nucleus of the rat.
    Liu RH; Tang JS; Hou ZL
    Brain Res; 1989 Mar; 481(2):350-5. PubMed ID: 2720387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.