These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 1798411)

  • 21. Afferent projections to the oral motor nuclei in the rat.
    Travers JB; Norgren R
    J Comp Neurol; 1983 Nov; 220(3):280-98. PubMed ID: 6315785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative ultrastructure of slowly adapting lingual afferent terminals in the principal and oral nuclei in the cat.
    Zhang LF; Moritani M; Honma S; Yoshida A; Shigenaga Y
    Synapse; 2001 Aug; 41(2):96-111. PubMed ID: 11400176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase.
    Langer T; Fuchs AF; Scudder CA; Chubb MC
    J Comp Neurol; 1985 May; 235(1):1-25. PubMed ID: 3989000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in neuronal cell bodies in N. laminaris during deafferentation-induced dendritic atrophy.
    Deitch JS; Rubel EW
    J Comp Neurol; 1989 Mar; 281(2):259-68. PubMed ID: 2708576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primary afferent plasticity following deafferentation of the trigeminal brainstem nuclei in the adult rat.
    De Riu PL; Russo A; Pellitteri R; Stanzani S; Tringali G; Roccazzello AM; De Riu G; Marongiu P; Mameli O
    Exp Neurol; 2008 Sep; 213(1):101-7. PubMed ID: 18599040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit.
    Errico P; Barmack NH
    J Comp Neurol; 1993 Oct; 336(2):307-20. PubMed ID: 8245221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postnatal modifications of the dendritic tree of cells in the inferior colliculus of the cat. A quantitative Golgi analysis.
    Meininger V; Baudrimont M
    J Comp Neurol; 1981 Aug; 200(3):339-55. PubMed ID: 7276243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid changes in ultrastructure during deafferentation-induced dendritic atrophy.
    Deitch JS; Rubel EW
    J Comp Neurol; 1989 Mar; 281(2):234-58. PubMed ID: 2708575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The morphometric characteristics of the neurons of the reticular nuclei in the brain stem in the kitten].
    Gladkovich NG; Vorob'eva AD; Lushchekin VS; Shuleĭkina KV
    Neirofiziologiia; 1991; 23(4):399-409. PubMed ID: 1717854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Some brain stem neuronal mechanism responsible for bilateral coordination of jaw movement.
    Nakamura Y
    Bull Tokyo Med Dent Univ; 1974 Aug; 21 Suppl(0):31-4. PubMed ID: 4528873
    [No Abstract]   [Full Text] [Related]  

  • 31. Brainstem afferents to the omnipause region in the cat: a horseradish peroxidase study.
    Langer TP; Kaneko CR
    J Comp Neurol; 1984 Dec; 230(3):444-58. PubMed ID: 6520245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve.
    Whitehead MC; Frank ME
    J Comp Neurol; 1983 Nov; 220(4):378-95. PubMed ID: 6643734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Afferents to the trigeminal and facial motor nuclei in pigeon (Columba livia L.): central connections of jaw motoneurons.
    Berkhoudt H; Klein BG; Zeigler HP
    J Comp Neurol; 1982 Aug; 209(3):301-12. PubMed ID: 7130458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical and brain stem afferents to the ventral thalamic nuclei of the cat demonstrated by retrograde axonal transport of horseradish peroxidase.
    Nakano K; Kohno M; Hasegawa Y; Tokushige A
    J Comp Neurol; 1985 Jan; 231(1):102-20. PubMed ID: 3968225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat.
    Campos-Torres A; Touret M; Vidal PP; Barnum S; de Waele C
    Neuroscience; 2005; 130(4):853-65. PubMed ID: 15652984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myelinated dendrites of Purkinje cells in deafferented cerebellar cortex.
    Hámori J; Lakos I; Mezey E
    J Hirnforsch; 1980; 21(4):391-407. PubMed ID: 7451939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(4):385-418. PubMed ID: 4067279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Afferent influences on brainstem auditory nuclei of the chicken: regulation of transcriptional activity following cochlea removal.
    Garden GA; Redeker-DeWulf V; Rubel EW
    J Comp Neurol; 1995 Aug; 359(3):412-23. PubMed ID: 7499538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophysiological and morphological correlates of axotomy-induced deafferentation of the goldfish Mauthner cell.
    Wood MR; Faber DS
    J Comp Neurol; 1986 Feb; 244(4):413-29. PubMed ID: 3958235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.