These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17985163)

  • 21. Influence of different magnetites on properties of magnetic Pseudomonas aeruginosa immobilizates used for biosurfactant production.
    Heyd M; Weigold P; Franzreb M; Berensmeier S
    Biotechnol Prog; 2009; 25(6):1620-9. PubMed ID: 19691121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Construction and evaluation of a genetic engineered strain for biodesulfurization].
    Li H; Yu Z; Xiong X; Li Y; Li X
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2034-40. PubMed ID: 19306572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced phenol degradation by Pseudomonas sp. SA01: gaining insight into the novel single and hybrid immobilizations.
    Mollaei M; Abdollahpour S; Atashgahi S; Abbasi H; Masoomi F; Rad I; Lotfi AS; Zahiri HS; Vali H; Noghabi KA
    J Hazard Mater; 2010 Mar; 175(1-3):284-92. PubMed ID: 19883975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermophilic biodesulfurization and its application in oil desulfurization.
    Chen S; Zhao C; Liu Q; Zang M; Liu C; Zhang Y
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9089-9103. PubMed ID: 30203145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads.
    Garbayo I; Vílchez C; Vega JM; Nava-Saucedo JE; Barbotin JN
    Biotechnol Lett; 2004 Dec; 26(23):1825-7. PubMed ID: 15672222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells.
    Guobin S; Huaiying Z; Weiquan C; Jianmin X; Huizhou L
    Biophys J; 2005 Dec; 89(6):L58-60. PubMed ID: 16258046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.
    Gao QT; Wong YS; Tam NF
    Bioresour Technol; 2011 Nov; 102(22):10230-8. PubMed ID: 21944284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling.
    Sankalia MG; Mashru RC; Sankalia JM; Sutariya VB
    AAPS PharmSciTech; 2005 Sep; 6(2):E209-22. PubMed ID: 16353980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels.
    Kaygusuz H; Evingür GA; Pekcan Ö; von Klitzing R; Erim FB
    Int J Biol Macromol; 2016 Nov; 92():220-224. PubMed ID: 27381586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization of Bacillus amyloliquefaciens MBL27 cells for enhanced antimicrobial protein production using calcium alginate beads.
    Kumaravel V; Gopal SR
    Biotechnol Appl Biochem; 2010 Dec; 57(3):97-103. PubMed ID: 21044046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly(N-vinyl-2-pyrrolidone) matrix.
    İnal M; Yiğitoğlu M
    Appl Biochem Biotechnol; 2012 Sep; 168(2):266-78. PubMed ID: 22717770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles.
    Huang KS; Lai TH; Lin YC
    Lab Chip; 2006 Jul; 6(7):954-7. PubMed ID: 16804602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.
    Zhou X; Liu L; Chen Y; Xu S; Chen J
    Can J Microbiol; 2007 Sep; 53(9):1033-7. PubMed ID: 18026223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study of the kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution.
    Farkas V; Felinger A; Hegedűsova A; Dékány I; Pernyeszi T
    Colloids Surf B Biointerfaces; 2013 Mar; 103():381-90. PubMed ID: 23247265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production.
    Cha C; Kim SR; Jin YS; Kong H
    Biotechnol Bioeng; 2012 Jan; 109(1):63-73. PubMed ID: 21732329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alginate-based emulsion template containing high oil loading stabilized by nonionic surfactants.
    Ong WD; Tey BT; Quek SY; Tang SY; Chan ES
    J Food Sci; 2015 Jan; 80(1):E93-E100. PubMed ID: 25529579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors.
    Nordmeier A; Chidambaram D
    Appl Biochem Biotechnol; 2016 Apr; 178(8):1503-9. PubMed ID: 26707587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects.
    Konti A; Mamma D; Hatzinikolaou DG; Kekos D
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1597-609. PubMed ID: 27262716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads.
    Dey K; Roy P
    Biotechnol Lett; 2011 Jun; 33(6):1101-5. PubMed ID: 21327703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution.
    Lee KY; Heo TR
    Appl Environ Microbiol; 2000 Feb; 66(2):869-73. PubMed ID: 10653768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.