BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17985632)

  • 1. Breast cancer detection using neutron stimulated emission computed tomography: prominent elements and dose requirements.
    Bender JE; Kapadia AJ; Sharma AC; Tourassi GD; Harrawood BP; Floyd CE
    Med Phys; 2007 Oct; 34(10):3866-71. PubMed ID: 17985632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to neutron stimulated emission computed tomography.
    Floyd CE; Bender JE; Sharma AC; Kapadia A; Xia J; Harrawood B; Tourassi GD; Lo JY; Crowell A; Howell C
    Phys Med Biol; 2006 Jul; 51(14):3375-90. PubMed ID: 16825736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy.
    Kapadia AJ; Tourassi GD; Sharma AC; Crowell AS; Kiser MR; Howell CR
    Phys Med Biol; 2008 May; 53(10):2633-49. PubMed ID: 18443387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver.
    Belley MD; Segars WP; Kapadia AJ
    Med Phys; 2014 Jun; 41(6):063902. PubMed ID: 24877842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative assessment of lesion detection accuracy, resolution, and reconstruction algorithms in neutron stimulated emission computed tomography.
    Lakshmanan MN; Kapadia AJ
    IEEE Trans Med Imaging; 2012 Jul; 31(7):1426-35. PubMed ID: 22481814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis for liver iron measurement through neutron stimulated emission computed tomography: a Monte Carlo study in GEANT4.
    Agasthya GA; Harrawood BC; Shah JP; Kapadia AJ
    Phys Med Biol; 2012 Jan; 57(1):113-26. PubMed ID: 22127233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron-stimulated emission computed tomography of a multi-element phantom.
    Floyd CE; Kapadia AJ; Bender JE; Sharma AC; Xia JQ; Harrawood BP; Tourassi GD; Lo JY; Crowell AS; Kiser MR; Howell CR
    Phys Med Biol; 2008 May; 53(9):2313-26. PubMed ID: 18421119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP.
    Viana RS; Agasthya GA; Yoriyaz H; Kapadia AJ
    Phys Med Biol; 2013 Sep; 58(17):5867-83. PubMed ID: 23920157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of breast cancer imaging using gamma-ray stimulated emission computed tomography.
    Lakshmanan MN; Harrawood BP; Agasthya GA; Kapadia AJ
    IEEE Trans Med Imaging; 2014 Feb; 33(2):546-55. PubMed ID: 24239988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.
    Goorley JT; Kiger WS; Zamenhof RG
    Med Phys; 2002 Feb; 29(2):145-56. PubMed ID: 11865986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a pencil beam model-based treatment planning system for fast neutron therapy.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2003 Jan; 30(1):21-6. PubMed ID: 12557974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy.
    Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.