BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 17985634)

  • 21. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system.
    Schulz-Wendtland R; Wenkel E; Lell M; Böhner C; Bautz WA; Mertelmeier T
    Rofo; 2006 Dec; 178(12):1219-23. PubMed ID: 17136645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breast tomosynthesis using the multiple projection algorithm adapted for stationary detectors.
    Malliori A; Bliznakova K; Bliznakov Z; Cockmartin L; Bosmans H; Pallikarakis N
    J Xray Sci Technol; 2016; 24(1):23-41. PubMed ID: 26890907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray source motion blur modeling and deblurring with generative diffusion for digital breast tomosynthesis.
    Gao M; Fessler JA; Chan HP
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38640913
    [No Abstract]   [Full Text] [Related]  

  • 25. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction.
    Lu Y; Chan HP; Wei J; Hadjiiski LM
    Med Phys; 2010 Nov; 37(11):6003-14. PubMed ID: 21158312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.
    Seyyedi S; Cengiz K; Kamasak M; Yildirim I
    Comput Math Methods Med; 2013; 2013():250689. PubMed ID: 24371468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of super-resolution in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2012 Dec; 39(12):7518-39. PubMed ID: 23231301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breast tomosynthesis imaging configuration analysis.
    Rayford CE; Zhou W; Chen Y
    Int J Comput Biol Drug Des; 2013; 6(3):255-62. PubMed ID: 23900440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
    Kim H; Lee T; Hong J; Sabir S; Lee JR; Choi YW; Kim HH; Chae EY; Cho S
    Med Phys; 2017 Feb; 44(2):417-425. PubMed ID: 28032909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.
    Sahiner B; Chan HP; Hadjiiski LM; Helvie MA; Wei J; Zhou C; Lu Y
    Med Phys; 2012 Jan; 39(1):28-39. PubMed ID: 22225272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array.
    Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D
    J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cascaded systems analysis of shift-variant image quality in slit-scanning breast tomosynthesis.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Oct; 45(10):4392-4401. PubMed ID: 30091470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impulse response and Modulation Transfer Function analysis for Shift-And-Add and Back Projection image reconstruction algorithms in Digital Breast Tomosynthesis (DBT).
    Chen Y; Lo JY; Dobbins JT
    Int J Funct Inform Personal Med; 2008; 1(2):189-204. PubMed ID: 23935707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voting strategy for artifact reduction in digital breast tomosynthesis.
    Wu T; Moore RH; Kopans DB
    Med Phys; 2006 Jul; 33(7):2461-71. PubMed ID: 16898449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of angular dose distribution on the detection of microcalcifications in digital breast tomosynthesis.
    Hu YH; Zhao W
    Med Phys; 2011 May; 38(5):2455-66. PubMed ID: 21776781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.