These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 17985864)
1. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks. Kahn I; Sild S; Maran U J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864 [TBL] [Abstract][Full Text] [Related]
2. Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis. Devillers J SAR QSAR Environ Res; 2004 Aug; 15(4):237-49. PubMed ID: 15370415 [TBL] [Abstract][Full Text] [Related]
3. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response surface methodology with nonlinear methods. Ren S J Chem Inf Comput Sci; 2003; 43(5):1679-87. PubMed ID: 14502503 [TBL] [Abstract][Full Text] [Related]
4. Quantitative structure-toxicity relationships (QSTRs): a comparative study of various non linear methods. General regression neural network, radial basis function neural network and support vector machine in predicting toxicity of nitro- and cyano- aromatics to Tetrahymena pyriformis. Panaye A; Fan BT; Doucet JP; Yao XJ; Zhang RS; Liu MC; Hu ZD SAR QSAR Environ Res; 2006 Feb; 17(1):75-91. PubMed ID: 16513553 [TBL] [Abstract][Full Text] [Related]
5. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912 [TBL] [Abstract][Full Text] [Related]
6. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools. Roy K; Ghosh G Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717 [TBL] [Abstract][Full Text] [Related]
7. Application of random forest approach to QSAR prediction of aquatic toxicity. Polishchuk PG; Muratov EN; Artemenko AG; Kolumbin OG; Muratov NN; Kuz'min VE J Chem Inf Model; 2009 Nov; 49(11):2481-8. PubMed ID: 19860412 [TBL] [Abstract][Full Text] [Related]
8. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Xue Y; Li H; Ung CY; Yap CW; Chen YZ Chem Res Toxicol; 2006 Aug; 19(8):1030-9. PubMed ID: 16918241 [TBL] [Abstract][Full Text] [Related]
9. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related]
10. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals. Schultz TW; Netzeva TI; Roberts DW; Cronin MT Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140 [TBL] [Abstract][Full Text] [Related]
11. Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors. Kaiser KL; Niculescu SP; Schultz TW SAR QSAR Environ Res; 2002 Mar; 13(1):57-67. PubMed ID: 12074392 [TBL] [Abstract][Full Text] [Related]
12. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks. Jalali-Heravi M; Kyani A Chemosphere; 2008 Jun; 72(5):733-40. PubMed ID: 18499226 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833 [TBL] [Abstract][Full Text] [Related]
14. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
15. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors. Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166 [TBL] [Abstract][Full Text] [Related]
16. Prediction of fathead minnow acute toxicity of organic compounds from molecular structure. Eldred DV; Weikel CL; Jurs PC; Kaiser KL Chem Res Toxicol; 1999 Jul; 12(7):670-8. PubMed ID: 10409408 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods. Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574 [TBL] [Abstract][Full Text] [Related]
18. An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Enoch SJ; Cronin MT; Schultz TW; Madden JC Chemosphere; 2008 Apr; 71(7):1225-32. PubMed ID: 18261763 [TBL] [Abstract][Full Text] [Related]
19. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). Papa E; Villa F; Gramatica P J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902 [TBL] [Abstract][Full Text] [Related]
20. Definition of the structural domain of the baseline non-polar narcosis model for Tetrahymena pyriformis. Ellison CM; Cronin MT; Madden JC; Schultz TW SAR QSAR Environ Res; 2008; 19(7-8):751-83. PubMed ID: 19061087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]