BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17985882)

  • 1. Mechanism of enzymatic fluorination in Streptomyces cattleya.
    Zhu X; Robinson DA; McEwan AR; O'Hagan D; Naismith JH
    J Am Chem Soc; 2007 Nov; 129(47):14597-604. PubMed ID: 17985882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism.
    Cadicamo CD; Courtieu J; Deng H; Meddour A; O'Hagan D
    Chembiochem; 2004 May; 5(5):685-90. PubMed ID: 15122641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enzymatic Finkelstein reaction: fluorinase catalyses direct halogen exchange.
    Lowe PT; Cobb SL; O'Hagan D
    Org Biomol Chem; 2019 Aug; 17(32):7493-7496. PubMed ID: 31364664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterisation of 5'-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya.
    Schaffrath C; Deng H; O'Hagan D
    FEBS Lett; 2003 Jul; 547(1-3):111-4. PubMed ID: 12860396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure and mechanism of a bacterial fluorinating enzyme.
    Dong C; Huang F; Deng H; Schaffrath C; Spencer JB; O'Hagan D; Naismith JH
    Nature; 2004 Feb; 427(6974):561-5. PubMed ID: 14765200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Engineered E. coli Strain for Direct in Vivo Fluorination.
    Markakis K; Lowe PT; Davison-Gates L; O'Hagan D; Rosser SJ; Elfick A
    Chembiochem; 2020 Jul; 21(13):1856-1860. PubMed ID: 32003116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis by desolvation: the catalytic prowess of SAM-dependent halide-alkylating enzymes.
    Lohman DC; Edwards DR; Wolfenden R
    J Am Chem Soc; 2013 Oct; 135(39):14473-5. PubMed ID: 24041082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles in S-adenosyl-L-methionine binding and catalysis for active site residues of the thiostrepton resistance methyltransferase.
    Myers CL; Kuiper EG; Grant PC; Hernandez J; Conn GL; Honek JF
    FEBS Lett; 2015 Oct; 589(21):3263-70. PubMed ID: 26450779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assay for the enantiomeric analysis of [2H1]-fluoroacetic acid: insight into the stereochemical course of fluorination during fluorometabolite biosynthesis in streptomyces cattleya.
    O'Hagan D; Goss RJ; Meddour A; Courtieu J
    J Am Chem Soc; 2003 Jan; 125(2):379-87. PubMed ID: 12517149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis.
    Wang Y; Deng Z; Qu X
    F1000Res; 2014; 3():61. PubMed ID: 24795808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and kinetic studies on RosA, the enzyme catalysing the methylation of 8-demethyl-8-amino-d-riboflavin to the antibiotic roseoflavin.
    Tongsook C; Uhl MK; Jankowitsch F; Mack M; Gruber K; Macheroux P
    FEBS J; 2016 Apr; 283(8):1531-49. PubMed ID: 26913589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of methionine adenosyltransferase with high diastereoselectivity for biocatalytic synthesis of (S)-S-adenosyl-l-methionine and exploring its relationship with fluorinated biosynthetic pathway.
    Ren S; Cheng X; Ma L
    Enzyme Microb Technol; 2021 Oct; 150():109881. PubMed ID: 34489034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus.
    Oster LM; Lester DR; Terwisscha van Scheltinga A; Svenda M; van Lun M; Généreux C; Andersson I
    J Mol Biol; 2006 Apr; 358(2):546-58. PubMed ID: 16527306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry: biosynthesis of an organofluorine molecule.
    O'Hagan D; Schaffrath C; Cobb SL; Hamilton JT; Murphy CD
    Nature; 2002 Mar; 416(6878):279. PubMed ID: 11907567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of 5'-fluoro-5-deoxyinosine as a shunt product in cell free extracts of Streptomyces cattleya.
    Cobb SL; Deng H; Hamilton JT; McGlinchey RP; O'Hagan D; Schaffrath C
    Bioorg Chem; 2005 Oct; 33(5):393-401. PubMed ID: 16165185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unusual metal-bound 4-fluorothreonine transaldolase from Streptomyces sp. MA37 catalyses promiscuous transaldol reactions.
    Wu L; Tong MH; Raab A; Fang Q; Wang S; Kyeremeh K; Yu Y; Deng H
    Appl Microbiol Biotechnol; 2020 May; 104(9):3885-3896. PubMed ID: 32140842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into fluorometabolite biosynthesis in Streptomyces cattleya DSM46488 through genome sequence and knockout mutants.
    Zhao C; Li P; Deng Z; Ou HY; McGlinchey RP; O'Hagan D
    Bioorg Chem; 2012 Oct; 44():1-7. PubMed ID: 22858315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery and characterization of a marine bacterial SAM-dependent chlorinase.
    Eustáquio AS; Pojer F; Noel JP; Moore BS
    Nat Chem Biol; 2008 Jan; 4(1):69-74. PubMed ID: 18059261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates.
    Cobb SL; Deng H; McEwan AR; Naismith JH; O'Hagan D; Robinson DA
    Org Biomol Chem; 2006 Apr; 4(8):1458-60. PubMed ID: 16604208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.