These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17985898)

  • 1. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide.
    Razkin J; Nilsson H; Baltzer L
    J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs.
    Razkin J; Lindgren J; Nilsson H; Baltzer L
    Chembiochem; 2008 Aug; 9(12):1975-84. PubMed ID: 18600814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo metallonucleases based on helix-loop-helix motifs.
    Rossi P; Tecilla P; Baltzer L; Scrimin P
    Chemistry; 2004 Sep; 10(17):4163-70. PubMed ID: 15352099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncovalent binding of a reaction intermediate by a designed helix-loop-helix motif-implications for catalyst design.
    Allert M; Baltzer L
    Chembiochem; 2003 Apr; 4(4):306-18. PubMed ID: 12672110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Setting the stage for new catalytic functions in designed proteins--exploring the imine pathway in the efficient decarboxylation of oxaloacetate by an Arg-Lys site in a four-helix bundle protein scaffold.
    Allert M; Baltzer L
    Chemistry; 2002 Jun; 8(11):2549-60. PubMed ID: 12180334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.
    Nicoll AJ; Allemann RK
    Org Biomol Chem; 2004 Aug; 2(15):2175-80. PubMed ID: 15280952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of an active dinuclear Zn(II) catalyst for cleavage of RNA analogues and a dinucleoside.
    O'Donoghue A; Pyun SY; Yang MY; Morrow JR; Richard JP
    J Am Chem Soc; 2006 Feb; 128(5):1615-21. PubMed ID: 16448134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic strategies of self-cleaving ribozymes.
    Cochrane JC; Strobel SA
    Acc Chem Res; 2008 Aug; 41(8):1027-35. PubMed ID: 18652494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of lysine reactivity in four-helix bundle proteins by site-selective pKa depression: expanding the versatility of proteins by postsynthetic functionalization.
    Andersson LK; Caspersson M; Baltzer L
    Chemistry; 2002 Aug; 8(16):3687-97. PubMed ID: 12203296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ricin A-chain: kinetics, mechanism, and RNA stem-loop inhibitors.
    Chen XY; Link TM; Schramm VL
    Biochemistry; 1998 Aug; 37(33):11605-13. PubMed ID: 9708998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of an active site guanine in hairpin ribozyme catalysis probed by exogenous nucleobase rescue.
    Kuzmin YI; Da Costa CP; Fedor MJ
    J Mol Biol; 2004 Jul; 340(2):233-51. PubMed ID: 15201049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dinuclear Zn(II) complex catalyzed cyclization of a series of 2-hydroxypropyl aryl phosphate RNA models: progressive change in mechanism from rate-limiting P-O bond cleavage to substrate binding.
    Bunn SE; Liu CT; Lu ZL; Neverov AA; Brown RS
    J Am Chem Soc; 2007 Dec; 129(51):16238-48. PubMed ID: 18047345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed four-helix bundle catalysts--the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters.
    Baltzer L; Broo KS; Nilsson H; Nilsson J
    Bioorg Med Chem; 1999 Jan; 7(1):83-91. PubMed ID: 10199659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of general acid-base catalysis in transesterification of an RNA model phosphodiester studied with strongly basic catalysts.
    Corona-Martínez DO; Taran O; Yatsimirsky AK
    Org Biomol Chem; 2010 Feb; 8(4):873-80. PubMed ID: 20135046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and mechanisms of Nudix hydrolases.
    Mildvan AS; Xia Z; Azurmendi HF; Saraswat V; Legler PM; Massiah MA; Gabelli SB; Bianchet MA; Kang LW; Amzel LM
    Arch Biochem Biophys; 2005 Jan; 433(1):129-43. PubMed ID: 15581572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing general acid catalysis in the hammerhead ribozyme.
    Thomas JM; Perrin DM
    J Am Chem Soc; 2009 Jan; 131(3):1135-43. PubMed ID: 19154176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic stabilization and general base catalysis in the active site of the human protein disulfide isomerase a domain monitored by hydrogen exchange.
    Hernández G; Anderson JS; LeMaster DM
    Chembiochem; 2008 Mar; 9(5):768-78. PubMed ID: 18302150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.