BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17986012)

  • 1. TFIIH controls developmentally-regulated cell cycle progression as a holocomplex.
    Matsuno M; Kose H; Okabe M; Hiromi Y
    Genes Cells; 2007 Nov; 12(11):1289-300. PubMed ID: 17986012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TFIIH trafficking and its nuclear assembly during early Drosophila embryo development.
    Aguilar-Fuentes J; Valadez-Graham V; Reynaud E; Zurita M
    J Cell Sci; 2006 Sep; 119(Pt 18):3866-75. PubMed ID: 16940351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase.
    Fuss JO; Tainer JA
    DNA Repair (Amst); 2011 Jul; 10(7):697-713. PubMed ID: 21571596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xpd/Ercc2 regulates CAK activity and mitotic progression.
    Chen J; Larochelle S; Li X; Suter B
    Nature; 2003 Jul; 424(6945):228-32. PubMed ID: 12853965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide excision repair driven by the dissociation of CAK from TFIIH.
    Coin F; Oksenych V; Mocquet V; Groh S; Blattner C; Egly JM
    Mol Cell; 2008 Jul; 31(1):9-20. PubMed ID: 18614043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH.
    Rossignol M; Kolb-Cheynel I; Egly JM
    EMBO J; 1997 Apr; 16(7):1628-37. PubMed ID: 9130708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair.
    Zhu Q; Wani G; Sharma N; Wani A
    DNA Repair (Amst); 2012 Dec; 11(12):942-50. PubMed ID: 23083890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of CAK from core TFIIH reveals a functional link between XP-G/CS and the TFIIH disassembly state.
    Arab HH; Wani G; Ray A; Shah ZI; Zhu Q; Wani AA
    PLoS One; 2010 Jun; 5(6):e11007. PubMed ID: 20543986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility.
    Fregoso M; Lainé JP; Aguilar-Fuentes J; Mocquet V; Reynaud E; Coin F; Egly JM; Zurita M
    Mol Cell Biol; 2007 May; 27(10):3640-50. PubMed ID: 17339330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of CDK7 substrate specificity by MAT1 and TFIIH.
    Yankulov KY; Bentley DL
    EMBO J; 1997 Apr; 16(7):1638-46. PubMed ID: 9130709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA repair and transcriptional effects of mutations in TFIIH in Drosophila development.
    Merino C; Reynaud E; Vázquez M; Zurita M
    Mol Biol Cell; 2002 Sep; 13(9):3246-56. PubMed ID: 12221129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes: ERCC2/CAK and TFIIH.
    Reardon JT; Ge H; Gibbs E; Sancar A; Hurwitz J; Pan ZQ
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6482-7. PubMed ID: 8692841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cyclin-dependent kinase-activating kinase exists in three distinct complexes.
    Drapkin R; Le Roy G; Cho H; Akoulitchev S; Reinberg D
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6488-93. PubMed ID: 8692842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK.
    Araújo SJ; Tirode F; Coin F; Pospiech H; Syväoja JE; Stucki M; Hübscher U; Egly JM; Wood RD
    Genes Dev; 2000 Feb; 14(3):349-59. PubMed ID: 10673506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spironolactone-induced XPB degradation requires TFIIH integrity and ubiquitin-selective segregase VCP/p97.
    Chauhan AK; Li P; Sun Y; Wani G; Zhu Q; Wani AA
    Cell Cycle; 2021 Jan; 20(1):81-95. PubMed ID: 33381997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Drosophila XPD model links cell cycle coordination with neuro-development and suggests links to cancer.
    Stettler K; Li X; Sandrock B; Braga-Lagache S; Heller M; Dümbgen L; Suter B
    Dis Model Mech; 2015 Jan; 8(1):81-91. PubMed ID: 25431422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of Cdk-activating kinase subunits with transcription factor TFIIH.
    Serizawa H; Mäkelä TP; Conaway JW; Conaway RC; Weinberg RA; Young RA
    Nature; 1995 Mar; 374(6519):280-2. PubMed ID: 7885450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional insights into the core-TFIIH from a comparative survey.
    Bedez F; Linard B; Brochet X; Ripp R; Thompson JD; Moras D; Lecompte O; Poch O
    Genomics; 2013 Mar; 101(3):178-86. PubMed ID: 23147676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH.
    Sandrock B; Egly JM
    J Biol Chem; 2001 Sep; 276(38):35328-33. PubMed ID: 11445587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective inhibition of CDK7 reveals high-confidence targets and new models for TFIIH function in transcription.
    Rimel JK; Poss ZC; Erickson B; Maas ZL; Ebmeier CC; Johnson JL; Decker TM; Yaron TM; Bradley MJ; Hamman KB; Hu S; Malojcic G; Marineau JJ; White PW; Brault M; Tao L; DeRoy P; Clavette C; Nayak S; Damon LJ; Kaltheuner IH; Bunch H; Cantley LC; Geyer M; Iwasa J; Dowell RD; Bentley DL; Old WM; Taatjes DJ
    Genes Dev; 2020 Nov; 34(21-22):1452-1473. PubMed ID: 33060135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.