BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17986230)

  • 1. Arachidonic acid induces both Na+ and Ca2+ entry resulting in apoptosis.
    Fang KM; Chang WL; Wang SM; Su MJ; Wu ML
    J Neurochem; 2008 Mar; 104(5):1177-89. PubMed ID: 17986230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free fatty acids act as endogenous ionophores, resulting in Na+ and Ca2+ influx and myocyte apoptosis.
    Fang KM; Lee AS; Su MJ; Lin CL; Chien CL; Wu ML
    Cardiovasc Res; 2008 Jun; 78(3):533-45. PubMed ID: 18267958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Na+ overload is caused by oxidative stress and leads to activation of the caspase 3- dependent apoptotic machinery.
    Yang KT; Pan SF; Chien CL; Hsu SM; Tseng YZ; Wang SM; Wu ML
    FASEB J; 2004 Sep; 18(12):1442-4. PubMed ID: 15231730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart.
    Correa F; Soto V; Zazueta C
    Int J Biochem Cell Biol; 2007; 39(4):787-98. PubMed ID: 17306600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipase C activation by Na+/Ca2+ exchange is essential for monensin-induced Ca2+ influx and arachidonic acid release in FRTL-5 thyroid cells.
    Wang XD; Kiang JG; Scheibel LW; Smallridge RC
    J Investig Med; 1999 Sep; 47(8):388-96. PubMed ID: 10510591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the mitochondrial calcium uniporter by the oxo-bridged dinuclear ruthenium amine complex (Ru360) prevents from irreversible injury in postischemic rat heart.
    de Jesús García-Rivas G; Guerrero-Hernández A; Guerrero-Serna G; Rodríguez-Zavala JS; Zazueta C
    FEBS J; 2005 Jul; 272(13):3477-88. PubMed ID: 15978050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial swelling and cytochrome c release: sensitivity to cyclosporin A and calcium.
    Kanno T; Fujita H; Muranaka S; Yano H; Utsumi T; Yoshioka T; Inoue M; Utsumi K
    Physiol Chem Phys Med NMR; 2002; 34(2):91-102. PubMed ID: 12841327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arachidonic acid inhibits capacitative Ca2+ entry and activates non-capacitative Ca2+ entry in cultured astrocytes.
    Yang KT; Chen WP; Chang WL; Su MJ; Tsai KL
    Biochem Biophys Res Commun; 2005 Jun; 331(2):603-13. PubMed ID: 15850803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death.
    Banasiak KJ; Burenkova O; Haddad GG
    Neuroscience; 2004; 126(1):31-44. PubMed ID: 15145071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion.
    Ruiz-Meana M; Garcia-Dorado D; Miró-Casas E; Abellán A; Soler-Soler J
    Cardiovasc Res; 2006 Sep; 71(4):715-24. PubMed ID: 16860295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reoxygenation-induced Ca2+ rise is mediated via Ca2+ influx and Ca2+ release from the endoplasmic reticulum in cardiac endothelial cells.
    Peters SC; Piper HM
    Cardiovasc Res; 2007 Jan; 73(1):164-71. PubMed ID: 17097624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Ca(2+)homeostasis in the regulation of apoptotic and necrotic cell deaths.
    Zhu LP; Yu XD; Ling S; Brown RA; Kuo TH
    Cell Calcium; 2000 Aug; 28(2):107-17. PubMed ID: 10970767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ fluorescence imaging of glutamate-evoked mitochondrial Na+ responses in astrocytes.
    Bernardinelli Y; Azarias G; Chatton JY
    Glia; 2006 Oct; 54(5):460-70. PubMed ID: 16886210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium-dependent apoptosis of cerebellar granule cells.
    Atlante A; Bobba A; de Bari L; Fontana F; Calissano P; Marra E; Passarella S
    J Neurochem; 2006 May; 97(4):1166-81. PubMed ID: 16606362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The operation of Na+/Ca2+ exchanger prevents intracellular Ca2+ overload and hepatocyte killing following iron-induced lipid peroxidation.
    Carini R; Bellomo G; Dianzani MU; Albano E
    Biochem Biophys Res Commun; 1995 Mar; 208(2):813-8. PubMed ID: 7695640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Na+/Ca2+ exchanger in preventing Na+ overload and hepatocyte injury: opposite effects of extracellular and intracellular Ca2+ chelation.
    Carini R; de Cesaris MG; Bellomo G; Albano E
    Biochem Biophys Res Commun; 1997 Mar; 232(1):107-10. PubMed ID: 9125111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners.
    Shin SM; Kim SG
    Mol Pharmacol; 2009 Jan; 75(1):242-53. PubMed ID: 18945820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of mitochondrial Na+-Ca2+ exchange in intracellular Ca2+ increase induced by ATP in PC12 cells.
    Maruyama K; Ohta T; Ito S
    Brain Res; 2004 Jul; 1013(1):40-50. PubMed ID: 15196966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arachidonic acid induces specific membrane permeability increase in heart mitochondria.
    Di Paola M; Zaccagnino P; Oliveros-Celis C; Lorusso M
    FEBS Lett; 2006 Feb; 580(3):775-81. PubMed ID: 16413540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Ca2+ channels and G proteins involved in arachidonic acid release by endothelin-1/endothelinA receptor.
    Kawanabe Y; Nozaki K; Hashimoto N; Masaki T
    Mol Pharmacol; 2003 Sep; 64(3):689-95. PubMed ID: 12920205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.