These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins. Dobrowolski A; Lolkema JS Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131 [TBL] [Abstract][Full Text] [Related]
26. Expression of the six chromate ion transporter homologues of Burkholderia xenovorans LB400. Acosta-Navarrete YM; León-Márquez YL; Salinas-Herrera K; Jácome-Galarza IE; Meza-Carmen V; Ramírez-Díaz MI; Cervantes C Microbiology (Reading); 2014 Feb; 160(Pt 2):287-295. PubMed ID: 24257816 [TBL] [Abstract][Full Text] [Related]
27. Comparison of full gyrA, gyrB, parC and parE gene sequences between all Ureaplasma parvum and Ureaplasma urealyticum serovars to separate true fluoroquinolone antibiotic resistance mutations from non-resistance polymorphism. Beeton ML; Chalker VJ; Kotecha S; Spiller OB J Antimicrob Chemother; 2009 Sep; 64(3):529-38. PubMed ID: 19567408 [TBL] [Abstract][Full Text] [Related]
28. [Chromates: resistance and detoxification in bacteria]. Cervantes C; Vaca S Rev Latinoam Microbiol; 1991; 33(1):71-6. PubMed ID: 1670257 [TBL] [Abstract][Full Text] [Related]
29. chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400. Reyes-Gallegos RI; Ramírez-Díaz MI; Cervantes C World J Microbiol Biotechnol; 2016 Mar; 32(3):45. PubMed ID: 26873556 [TBL] [Abstract][Full Text] [Related]
32. The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Martin RE; Kirk K Mol Biol Evol; 2004 Oct; 21(10):1938-49. PubMed ID: 15240840 [TBL] [Abstract][Full Text] [Related]
33. Exploring the FL-160-CRP gene family through sequence variability of the complement regulatory protein (CRP) expressed by the trypomastigote stage of Trypanosoma cruzi. Mathieu-Daudé F; Lafay B; Touzet O; Lelièvre J; Parrado F; Bosseno MF; Rojas AM; Fatha S; Ouaissi A; Brenière SF Infect Genet Evol; 2008 May; 8(3):258-66. PubMed ID: 18296127 [TBL] [Abstract][Full Text] [Related]
34. Transmembrane domain prediction and consensus sequence identification of the oligopeptide transport family. Wiles AM; Naider F; Becker JM Res Microbiol; 2006 May; 157(4):395-406. PubMed ID: 16364604 [TBL] [Abstract][Full Text] [Related]
35. PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport. Vasseur P; Soscia C; Voulhoux R; Filloux A Biochimie; 2007 Aug; 89(8):903-15. PubMed ID: 17524545 [TBL] [Abstract][Full Text] [Related]
36. Ancient origin of elicitin gene clusters in Phytophthora genomes. Jiang RH; Tyler BM; Whisson SC; Hardham AR; Govers F Mol Biol Evol; 2006 Feb; 23(2):338-51. PubMed ID: 16237208 [TBL] [Abstract][Full Text] [Related]
37. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Dixit R; Arakane Y; Specht CA; Richard C; Kramer KJ; Beeman RW; Muthukrishnan S Insect Biochem Mol Biol; 2008 Apr; 38(4):440-51. PubMed ID: 18342249 [TBL] [Abstract][Full Text] [Related]
38. The L6 membrane proteins--a new four-transmembrane superfamily. Wright MD; Ni J; Rudy GB Protein Sci; 2000 Aug; 9(8):1594-600. PubMed ID: 10975581 [TBL] [Abstract][Full Text] [Related]
39. Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins. Pasek S; Risler JL; Brézellec P Bioinformatics; 2006 Jun; 22(12):1418-23. PubMed ID: 16601004 [TBL] [Abstract][Full Text] [Related]
40. Evolutionary analysis of gamma-carbonic anhydrase and structurally related proteins. Parisi G; Fornasari M; Echave J Mol Phylogenet Evol; 2000 Mar; 14(3):323-34. PubMed ID: 10712838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]