These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17986339)

  • 1. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site.
    Carra JH; McHugh CA; Mulligan S; Machiesky LM; Soares AS; Millard CB
    BMC Struct Biol; 2007 Nov; 7():72. PubMed ID: 17986339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational change in ricin toxin A-Chain: A critical factor for inhibitor binding to the secondary pocket.
    Goto M; Higashi S; Ohba T; Kawata R; Nagatsu K; Suzuki S; Anslyn EV; Saito R
    Biochem Biophys Res Commun; 2022 Oct; 627():1-4. PubMed ID: 35998389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of ricin toxin A chain complexed with a highly potent pterin-based small-molecular inhibitor.
    Goto M; Sakamoto N; Higashi S; Kawata R; Nagatsu K; Saito R
    J Enzyme Inhib Med Chem; 2023 Dec; 38(1):2219038. PubMed ID: 37259593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leucine 232 and hydrophobic residues at the ribosomal P stalk binding site are critical for biological activity of ricin.
    Zhou Y; Li XP; Kahn JN; McLaughlin JE; Tumer NE
    Biosci Rep; 2019 Oct; 39(10):. PubMed ID: 31548364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small Molecule Inhibitors Targeting the Interaction of Ricin Toxin A Subunit with Ribosomes.
    Li XP; Harijan RK; Kahn JN; Schramm VL; Tumer NE
    ACS Infect Dis; 2020 Jul; 6(7):1894-1905. PubMed ID: 32428396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chemical modification of arginine residues outside the active site cleft of ricin A-chain on its RNA N-glycosidase activity for ribosomes.
    Watanabe K; Dansako H; Asada N; Sakai M; Funatsu G
    Biosci Biotechnol Biochem; 1994 Apr; 58(4):716-21. PubMed ID: 7764862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based identification of a ricin inhibitor.
    Yan X; Hollis T; Svinth M; Day P; Monzingo AF; Milne GW; Robertus JD
    J Mol Biol; 1997 Mar; 266(5):1043-9. PubMed ID: 9086280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk.
    Li XP; Kahn PC; Kahn JN; Grela P; Tumer NE
    J Biol Chem; 2013 Oct; 288(42):30270-30284. PubMed ID: 24003229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy determinants of binding the rRNA substrate and small ligands to ricin A-chain.
    Olson MA; Cuff L
    Biophys J; 1999 Jan; 76(1 Pt 1):28-39. PubMed ID: 9876120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pterin-based small molecule inhibitor capable of binding to the secondary pocket in the active site of ricin-toxin A chain.
    Saito R; Goto M; Katakura S; Ohba T; Kawata R; Nagatsu K; Higashi S; Kurisu K; Matsumoto K; Ohtsuka K
    PLoS One; 2022; 17(12):e0277770. PubMed ID: 36508422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition and interaction of small rings with the ricin A-chain binding site.
    Yan X; Day P; Hollis T; Monzingo AF; Schelp E; Robertus JD; Milne GW; Wang S
    Proteins; 1998 Apr; 31(1):33-41. PubMed ID: 9552157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk.
    Zhou Y; Li XP; Chen BY; Tumer NE
    Sci Rep; 2017 Feb; 7():42912. PubMed ID: 28230053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer.
    Day PJ; Pinheiro TJ; Roberts LM; Lord JM
    Biochemistry; 2002 Feb; 41(8):2836-43. PubMed ID: 11851431
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Bhattacharya S; Dahmane T; Goger MJ; Rudolph MJ; Tumer NE
    Biomol NMR Assign; 2024 Jun; 18(1):85-91. PubMed ID: 38642265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of several key active site residues of ricin A chain by mutagenesis and X-ray crystallography.
    Kim Y; Robertus JD
    Protein Eng; 1992 Dec; 5(8):775-9. PubMed ID: 1287657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of mutations surrounding and within the active site on the catalytic activity of ricin A chain.
    Marsden CJ; Fülöp V; Day PJ; Lord JM
    Eur J Biochem; 2004 Jan; 271(1):153-62. PubMed ID: 14686928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies.
    Legler PM; Compton JR; Hale ML; Anderson GP; Olson MA; Millard CB; Goldman ER
    MAbs; 2017 Jan; 9(1):43-57. PubMed ID: 27660893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of ricin A-chain (RTA) catalytic activity by a viral genome-linked protein (VPg).
    Aitbakieva VR; Ahmad R; Singh S; Domashevskiy AV
    Biochim Biophys Acta Proteins Proteom; 2019 Jun; 1867(6):645-653. PubMed ID: 30822539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based design and optimization of a new class of small molecule inhibitors targeting the P-stalk binding pocket of ricin.
    Rudolph MJ; Dutta A; Tsymbal AM; McLaughlin JE; Chen Y; Davis SA; Theodorous SA; Pierce M; Algava B; Zhang X; Szekely Z; Roberge JY; Li XP; Tumer NE
    Bioorg Med Chem; 2024 Feb; 100():117614. PubMed ID: 38340640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and activity of an active site substitution of ricin A chain.
    Day PJ; Ernst SR; Frankel AE; Monzingo AF; Pascal JM; Molina-Svinth MC; Robertus JD
    Biochemistry; 1996 Aug; 35(34):11098-103. PubMed ID: 8780513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.